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Abstract. Lymph node segmentation is an important yet challenging
problem in medical image analysis. The presence of enlarged lymph nodes
(LNs) signals the onset or progression of a malignant disease or infec-
tion. In the thoracoabdominal (TA) body region, neighboring enlarged
LNs often spatially collapse into “swollen” lymph node clusters (LNCs)
(up to 9 LNs in our dataset). Accurate segmentation of TA LNCs is com-
plexified by the noticeably poor intensity and texture contrast among
neighboring LNs and surrounding tissues, and has not been addressed
in previous work. This paper presents a novel approach to TA LNC
segmentation that combines holistically-nested neural networks (HNNs)
and structured optimization (SO). Two HNNs, built upon recent fully
convolutional networks (FCNs) and deeply supervised networks (DSNs),
are trained to learn the LNC appearance (HNN-A) or contour (HNN-
C) probabilistic output maps, respectively. HNN first produces the class
label maps with the same resolution as the input image, like FCN. After-
wards, HNN predictions for LNC appearance and contour cues are for-
mulated into the unary and pairwise terms of conditional random fields
(CRFs), which are subsequently solved using one of three different SO
methods: dense CRF, graph cuts, and boundary neural fields (BNF).
BNF yields the highest quantitative results. Its mean Dice coefficient
between segmented and ground truth LN volumes is 82.1% =+ 9.6 %,
compared to 73.0% + 17.6 % for HNN-A alone. The LNC relative vol-
ume (em?) difference is 13.7% =+ 13.1 %, a promising result for the devel-
opment of LN imaging biomarkers based on volumetric measurements.

1 Introduction

Lymph node (LN) segmentation and volume measurement play a crucial role in
important medical imaging based diagnosis tasks, such as quantitatively eval-
uating disease progression or the effectiveness of a given treatment or therapy.
Enlarged LNs, defined by the widely observed RECIST criterion [14] to have
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a short axis diameter > 10 mm on an axial computed tomography (CT) slice,
signal the onset or progression of a malignant disease or an infection. Often
performed manually, LN segmentation is highly complex, tedious and time con-
suming. Previous methods for automatic LN segmentation in CT images fall
under several categories, including atlas registration and label fusion [17], 3D
deformable surface shape model [6] and statistical 3D image feature learning
[1,7], respectively. This paper addresses and solves a novel problem: lymph node
cluster (LNC) segmentation in the thoracoabdominal (TA) region. LN volumes
are subsequently predicted from our segmentation results.

Fig. 1. CT images of thoracoabdominal lymph node clusters with annotated (red)
boundaries.

In CT, the TA region exhibits exceptionally poor intensity and texture con-
trast among neighboring LNs and between LNs and their surrounding tissues.
Furthermore, TA LNs often appear in clusters. Weak intensity contrast renders
the boundaries of distinct agglomerated LNs ambiguous (Fig. 1). Existing fully-
automated methods have been applied to the more contrast-distinctive axillary
and pelvic regions [1], as well as the head-and-neck section [6,17]. This paper
presents a fully-automated method for TA LNC segmentation. More importantly,
the segmentation task is formulated as a flexible, bottom-up image binary clas-
sification problem that can be effectively solved using deep convolutional neural
networks (CNN) and graph-based structured optimization and inference. Our
bottom-up approach can easily handle all variations in LNC size and spatial con-
figuration. By contrast, top-down, model-fitting methods [1,6,7,17] may struggle
to localize and segment each LN. LN volume is a more robust metric than short-
axis diameter, which is susceptible to high inter-observer variability and human
error. Furthermore, our proposed method is well-suited for measuring agglom-
erated LNs, whose ambiguous boundaries compromise the accuracy of diameter
measurement.

This paper addresses a clinically relevant and challenging problem: auto-
matic segmentation and volume measurement of TA LNCs. A publicly avail-
able dataset! containing 171 TA 3D CT volumes (with manually-annotated LN
segmentation masks) [15] is used. The method in this paper integrates HNN
learning with structured optimization (SO). Furthermore, it yields remarkable

! https://wiki.cancerimagingarchive.net /display /Public/ CT+Lymph+Nodes.
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quantitative results. The mean Dice similarity coefficient (DSC) between pre-
dicted and segmented LN volumes is 82.1 % 4 9.6 % for boundary neural fields
(BNF), and 73.0 % +£17.6 % for HNN-A. The relative volume measurement error
is 13.7% £ 13.1 % for BNF and 32.16 % =+ 36.28 % for HNN-A.

2 Methods

Our segmentation framework comprises two stages: holistically-nested neural
network (HNN) training/inference and structured optimization (SO). (1) Two
HNNs, designed in [18], are trained on pairs of raw CT images from the TA
region and their corresponding binary LN appearance (segmentation) or contour
(boundary) masks. We denote them as HNN-A and HNN-C, respectively. The
HNN merges the CNN frameworks of a fully convolutional network (FCN) [11]
and a deeply-supervised network (DSN) [10]. The FCN component is an end-to-
end holistic image training-prediction architecture: the output probability label
map has the same dimension as the input image. The DSN component performs
multi-scale feature learning, in which deep layer supervision informs and refines
classification results at multiple convolutional stages. HNN’s multi-level con-
textual architecture and auxiliary cost functions (which assign pixel-wise label
penalties) allow for capturing implicit, informative deep features to enhance the
segmentation accuracy. (2) However, HNN’s large receptive fields and pooling
layers potentially lead to segmentation outputs that are not precisely localized
along the LN boundaries. Hence, we implement and evaluate explicit Condi-
tional Random Field (CRF) based structured optimization schemes [2,3,9] to
refine segmentation results. Particularly, we optimize a CRF energy function
that includes a unary term encoding LN area information (HNN-A) and a pair-
wise term representing the object-specific LN boundary discontinuities (learned
by HNN-C via deep supervision). This pairwise energy differs from the conven-
tional intensity contrast-sensitive term from [9].

We note that the integration of boundary and appearance neural networks
for automatic segmentation has also been newly exploited in [13]. Both our paper
and [13] have been inspired by the visual cognitive science and computer vision
literature (namely [12,18]). However, the global methods are different: [13] refines
HNN predictions via robust spatial aggregation using random forest, as opposed
to structured optimization.

2.1 Holistically-Nested Neural Networks

The holistically-nested neural network (HNN) [18] was first proposed as an
image-to-image solution to the long-standing edge detection problem using deep
CNN. In this study, we empirically find that the HNN architecture is also highly
effective and efficient in predicting the full object segmentation mask, due to its
per-pixel label cost formulation. Therefore, we train two separate holistically-
nested neural networks to learn the probabilistic label maps of the LN specific
binary appearance mask (HNN-A) and contour mask (HNN-C) from raw TA



Automatic Lymph Node Cluster Segmentation 391

CT images. The HNN-A prediction map provides the approximate location and
shape of the target LNC, while the HNN-C prediction map renders LN bound-
ary cues. By learning boundaries alone, HNN-C generates boundary informa-
tion with refined spatial and contextual detail, relative to HNN-A. HNN-A and
HNN-C results are combined in the Structured Optimization phase (cf. Section:
Structured Optimization) to obtain more accurate pixel-wise label predictions.

HNN Training. We adopt the CNN architecture in [18], which derives from a
VGGNet model pre-trained on ImageNet [16]. The HNN contains five convolu-
tional stages, with strides 1, 2, 4, 8, and 16, respectively, and different receptive
field sizes, all nested in the VGGNet as in [18]. The HNN includes one side layer
per convolutional stage, which is associated with an auxiliary classifier. The side
outputs, generated by each side layer, are increasingly refined, as they gradually
approach the ground truth. Finally, all side outputs are fed into a “weighted-
fusion” layer, which generates a global probability map merging the information
from all side output scales. During the training phase, HNN seeks to minimize
the per-pixel cost of each network stage, by applying stochastic gradient descent
to the global objective function

(W, w,h)* = argmin(Lgige (W, W) + Liuse (W, w, h)), (1)

where L4 is the loss function computed at each side-output layer (i.e., auxiliary
cost functions), and Ly,se is the cross-entropy distance between the ground truth
and fusion layer output edge maps. The loss function Lg;qe is a linear combination
of the image-level loss functions Eggi (W, w(m)). The parameters W correspond
to the set of standard network parameters, and w to the weights in each side-
output layer’s classifier. Due to the per-pixel cost setup [11,18], HNN does not
require a large number of training images to converge, and thus can be applied
to small datasets.

HNN Testing. During the testing phase, the network generates edge map
predictions for each layer. The final unified output is a weighted average of all
prediction maps:

YHED = Average(f/fusea Y(l) s Y(E))) (2)

side? » ~side

HNN is highly efficient, requiring a mere 0.4 s per image in the feed-forward test-
ing. Further details on the HNN architecture and training are provided in [18].

2.2 Structured Optimization

Although HNN is a state-of-the-art, image-to-image, semantic pixel-wise label-
ing method, it tends to produce imprecise segmentations, like many deep CNN
models. Its large receptive fields and many pooling layers compromise clarity
and spatial resolution in the deep layers. Therefore, we exploit explicit struc-
tured optimization techniques to refine HNN-A’s segmentation results. We select



392 I. Nogues et al.

a conditional random field (CRF) optimization framework, as it is well-suited for
integrating LN predictions with LN boundary cues. As in [2], the boundary cues
serve to improve segmentation coherence and object localization. For a given
target CT image, the unary potential is a function of the corresponding HNN-A
prediction, while the pairwise potential is a function of the corresponding HNN-
C prediction. Three structured optimization representations and methods are
described and evaluated: dense CRF, graph cuts, and boundary neural fields.

Under all three techniques, segmentation is cast as a binary classification
problem. A graph representation for the original CT image is provided, in which
vertices correspond to image pixels, and edges to inter-pixel connections. A
boundary strength-based affinity function, defined in [2], for distinct pixels ¢
and j is given by:

_Mi'
wij:exp( pu j), (3)

where M;; is the magnitude of the strongest LN boundary intersecting {,j},
and o is a smoothing hyper-parameter. The boundary strength map is obtained
by performing non-maximum suppression on an HNN-C prediction [18]. This
boundary-based affinity function better refines the segmentation than would
a standard image intensity gradient-based function, as intensity information is
highly ambiguous in TA CT images. We set the degree of pixel i to d; = Zf\; ;Wi
where N is the total number of pixels.

Dense Conditional Random Field: Our dense conditional random field
(dCRF) representation follows the framework in [5,9]. We adopt the CT intensity
contrast-sensitive pixel affinities for all possible image pixel pairs, as described
in [5]. Finally, the dCRF solver designed in [9] is utilized, as a variation of dis-
tributed message passing.

Graph Cuts: The minimum-cut/maximum-flow graph cuts (GC) algorithm
described in [4] is applied to the segmentation problem. We optimize an energy
function whose unary term is the negative log-likelihood of the HNN-A LN
segmentation probability value per pixel and pairwise term is defined using
Eq. 3 [2]. All inter-pixel affinities are computed within a 20 x 20 neighborhood
for each pixel location.

Boundary Neural Fields: The LN mask (HNN-A) and boundary (HNN-C)
predictions are integrated into a matrix model. We optimize the global energy
function:

1
X* = argmingD(X -D) (X -D ')+ X" D-W)X,  (4)
X

where X* is a IV x 1 vector representing an optimal continuous label assignment
for a vectorized input image (with N pixels), D is the N x N diagonal degree
matrix, W is the N x N pairwise affinity matrix, and f is a N x 1 vector
containing the HNN-A prediction values. Each diagonal entry d;; is set to d;,
defined above. W is a sparse weight matrix: the entries w;; are computed only for
pixel pairs i, j belonging to the same 20 x 20 pixel neighborhood. (via Eq. 3 [2]).
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The unary energy attempts to find a segmentation assignment X that devi-
ates little from the HNN-A output. The assignment X is weighted by D, in order
to assign larger unary costs to pixels with many similar neighbors. By contrast,
the pairwise energy minimizes the cost assigned to such pixels by weighting the
squared distances between segmentation assignments of similar pixel pairs {i, j}
by their affinity w;;. To balance the unary and pairwise contributions, the unary
term is weighted by the hyperparameter p. As in [2], p is set to 0.025. The
optimal segmentation is given by:

X* = (D —aW) !4f, (5)

1 n

Wherea:—andﬁ:HH

Ew . Note that Eq.5 is a closed-form solution.

3 Results and Discussion

3.1 Dataset Creation

Our dataset contains 84 abdominal and 87 mediastinal 3D CT scans (512 x 512 x
512 voxels) (publicly available from [15]). We spatially group the ground truth
binary LN masks in 3D to form clusters with a linking distance constraint. All
LN clusters, padded by 32 pixels in each direction, are subsequently cropped,
resulting in 1~7 such subvolume regions (77 X 76 x 79 — 212 x 235 x 236 voxels)
per CT volume. All CT axial slices have been extracted from the portal venous
phase with slice thickness 1 — 1.25 mm and manually segmented by an expert
radiologist. This yields a total of 39,361 images (16,268 images containing LN
pixels) in 411 LN clusters (with 395 abdominal and 295 mediastinal LNs). By
extracting all LN contours from the ground truth appearance masks, we obtain
the LN contour masks to train HNN-C. Examples of LN CT image ground truth
boundaries are shown in Figs. 1 and 2.

3.2 Quantitative Analysis

Segmentation accuracies of HNN-A, BNF, GC, and dCRF are evaluated. The
volume-wise means and standard deviations (std.) are computed for three evalu-
ations metrics: Dice similarity coefficient (DSC), Intersection over Union (ToU),
and Relative Volume Difference (RVD) (cm?) between predicted and ground
truth LNC 3D masks. The RVD indicates whether volume measurement is accu-
rate enough to be used as a new imaging biomarker, in addition to the diameter-
based RECIST criterion [14].

Our experiments are conducted under 4-fold cross-validation, with the
dataset split at the patient level. Prior to generating binary segmentation results
for HNN-A prediction maps alone (with pixels in the range [0, 1]), we remove all
pixels below the threshold 7 = 8.75 x 10~!. This value of 7, which is shown to
maximize the mean DSC between the HNN-A predictions and ground truth LN
masks, is calibrated using the training folds. HNN is run on Caffe [8], using a
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Fig.2. Examples of LN CT image segmentation. Top, Bottom: CT images with
ground truth (red) and BNF segmented (green) boundaries. Center: HNN-A LN
probability maps. CT images 1-3, 5—8 depict successful segmentation results.
CT image + map 4 present an unsuccessful case.

Nvidia Tesla K40 GPU. The system requires 5 h 40 min for training (30K iter-
ations), and 7min 43s for testing (computation of all contour and area maps).
BNF is run on MATLAB 2013a (~ 9h). dCRF and GC are run using C+-+
(~ 3 h; ~ 12 h). The hyperparameters of dCRF and GC (described in [3,9]) are
optimized using a randomized search.

BNF yields the highest quantitative segmentation results. Its mean and std
per-volume DSC is 82.1 4 9.6%, above HNN-A’s 73.0 £ 17.6 %, dCRF’s 69.0 &
22.0%, and GC’s 67.3 & 16.8% (cf. Table1). Additionally, it decreases HNN-A’s
mean RVD from 32.2% to 13.7 %. Meanwhile, dCRF marginally decreases the
RVD to 29.6 %, and GC increases it to 86.5 %. Figure 2 contains 8 examples of
LNC segmentation using BNF. The plots in Fig.3 compare segmentation and
ground truth LNC volume values (in cm?).

Due to the HNN’s deeply nested architecture and auxiliary loss functions
on multi-scale side-output layers, the quality of HNN-A segmentation is already
high. dCRF’s decline in performance relative to HNN-A may be partly attributed
to its CT intensity contrast-sensitive pairwise CRF term, defined in [9]. The
appearance kernel in this function implies that neighboring pixels of similar
intensity are likely to belong to the same class. Though highly relevant in natural
images, this idea cannot be extended to TA CT images, in which LN and back-
ground pixels may have similar intensities. GC, however, uses a pairwise term
defined by the HNN-C boundary cues. Its lower performance may be attributed
to its usage of an L norm for the CRF energy minimization. Unlike the Lo
norm, used by dCRF and BNF, the L; norm may yield multiple and/or unsta-
ble solutions, thus compromising the final segmentation accuracy. Like GC, BNF
omits all intensity information from the energy function. However, it utilizes the
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Fig. 3. Comparison between ground truth and predicted LN volumes.

boundary cues from HNN-C in both the unary and pairwise terms. Hence, one
may infer that an emphasis on LN boundary information is crucial to overcome
the complexity of TA LNC CT image segmentation. Additionally, the Lo norm
may increase the accuracy of the final segmentation result.

Comparison to previous work: The proposed bottom-up LN segmentation
scheme equals or surpasses previous top-down methods in performance, though
applied to a more challenging body region. For head-and-neck segmentation, [17]
obtains a mean DSC of 73.0% on five CT scans. The neck study in [6] yields
relative volumetric segmentation error ratios of 38.88% — 51.75% for five CT
scans. The discriminative learning approach in [7] only reports LN detection
results on 54 chest CT scans and no information on LN segmentation accuracy.
The more comprehensive study from [1] achieves a mean DSC of 80.0 % + 12.6 %
for 308 axillary LNs and 76.0 % + 12.7% for 455 pelvic+abdominal LNs, from
a dataset of 101 CT cases.

Table 1. Evaluation of segmentation accuracy: HNN-A, BNF, dCRF, and GC

Method | Evaluation Metric

Mean DSC (%) | Mean IoU (%) | Mean RVD (%)
HNN-A [ 73.0+£17.6 60.1 +18.8 32.24+46.3
BNF 82.1£9.6 70.6 £11.9 13.7+£13.1
dCRF [69.0+22.0 56.2 + 21.6 29.6 =454
GC 67.3£16.8 53.0£17.9 86.5 £ 107.6

4 Conclusion

To solve a challenging problem with high clinical relevance — automatic seg-
mentation and volume measurement of TA LNCs in CT images, our method
integrates HNN learning in both LN appearance and contour channels and
exploits different structured optimization methods. BNF (combining HNN-A and



396 I. Nogues et al.

HNN-C via a sparse matrix representation) is the most accurate segmentation
scheme. BNF’s mean RVD of 13.7 £ 13.1% is promising for the development of
LN imaging biomarkers based on volumetric measurements, which may lay the
groundwork for improved RECIST LN measurements.
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