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Abstract. In this paper, we exploit robust depth information with sim-
ple color-shape appearance model on single object tracking in crowd dy-
namic scenes. Since binocular video streams are captured from a moving
camera rig, background subtraction cannot provide a reliable enhance-
ment of region of interest. Our main contribution is a novel tracking
strategy to employ explicit stereo depth to track and segment object in
crowd dynamic scenes with occlusion handling. Appearance cues includ-
ing color and shape play a secondary role to further extract the fore-
ground acquired by previous depth-based segmentation. The proposed
depth-driven tracking approach can largely alleviate the drifting issue,
especially when the object frequently interacts with similar background
in long sequence tracking. The problems caused by rapid object appear-
ance change can also be avoided due to the stability of the depth cue.
Furthermore, we propose a new, yet simple and effective depth-based
scheme to cope with complete occlusion in tracking. From experiments
on a large collection of challenging outdoor and indoor sequences, our al-
gorithm demonstrates accurate and reliable tracking performance which
outperforms other state-of-the-art competing algorithms.

1 Introduction

Although much progress has been made in recent years, object tracking still
remains an unsolved problem since most appearance-based tracking approach-
es [1–6] still fail to eliminate the drift problem caused by similar background
outliers. Moreover, occlusion is hard to be discriminated from sharp appearance
changes using appearance cues, which results in the failure of occlusion detec-
tion. And there is no effective method to reacquire an object after complete
occlusion. Compared with appearance cues, depth information that encodes 3D
spatial relationships among objects is more helpful for achieving robust tracking.
To make depth cue applicable to most of tracking situations, we use an improved
generic stereo algorithm [7] to generate dense depth map from a binocular video
sequence. Our tracking scenario is similar to [8–10] which is extremely challeng-
ing due to various factors such as motion blur, varying lighting, continuously
interacting moving objects, frequent partial and complete occlusion and mobile
camera placement. We exploit discrete object-depth labels on generated depth
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Fig. 1. Depth-Driven Tracking Framework.

map repetitively over time to drive the object tracking and segmentation in
crowd dynamic scenes, based on the assumption of statistically uniform depth
distribution within the object area.

In our depth-driven tracking framework, object tracking is treated as the
propagation of the spatial object blob on a uniform depth support map. We
observe that depth change is more stable than other appearance cues between
consecutive frames. Our tracker first computes dominant depth blob of the ob-
ject, derived from temporal depth blob propagation and represented as clusters
of superpixels1. Then we parse and prune the pseudo foreground blob or outliers
of similar depth values with Support Vector Machines (SVM) based shape filters
and a weak color-shape model. Lastly, the occlusion reasoning scheme is executed
to detect occlusion which is accompanied with sharp depth changes in the object
area or rapid appearance alterations with abnormal location movement. Under
complete occlusion, object reacquisition module will search for possible object
reappearance near the occluding outliers. The overall framework is summarized
in Fig. 1.

Our main contributions are three-fold. First, we propose a novel and ef-
fective depth blob propagation method for object tracking in crowd dynamic
scenes. Second, we show how the combination of the principal axis based fore-
ground parsing scheme and the SVM-based single object shape filter alleviates
drift problem, even under sharp appearance changes or low contrast between
the foreground and background. Thirdly, the outlier blob localization approach
and switching strategy are proposed to maintain effective searching window for
object reacquisition after complete occlusion. The superior performance against
the appearance-based [3, 12, 5] and detection-based tracking approaches [13, 14,
10] on well-known binocular datasets [8, 15, 16] proves the effectiveness of the
proposed tracking algorithm.

1 Depth-field superpixels are obtained by image segmentation [11] on LUV color space.
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2 Previous Work

We compare our depth-based tracking approach with five categories of tracking
methods. First, Shotton [17] shows how complex human postures can be reliably
recognized in indoor environment from a single depth image captured by the
Microsoft Kinect camera. Their works focus on human pose estimation that is
a different application. Moreover, Kinect does not work well outside of limited
field of view and under strong outdoor lighting, which is hard to be applied in
outdoor crowd dynamic scenes. Second, multi-camera tracking approaches [18,
19] can tackle multiple human tracking with estimated ground plane but impose
geometrically constrained field of view, thus cannot be applied on a moving
platform or in dynamic scenes. Third, our explicit depth parsing is superior to
highly sophisticated appearance-based trackers [1–6] since depth cue is more
stable and indicative for object localization in dynamic scenes. Fourth, depth-
assisted tracking methods [20–23] are very sensitive to depth noise, which results
in unstable tracking performance.

Lastly, the most relevant previous works are the multi-person tracking sys-
tems [24, 8, 9], where depth cue is used as an auxiliary cue to augment object
hypothesis derived from object detection. Additionally, [10, 14, 13] extract ROIs
from an image by projecting the 3D points from a depth map onto the estimated
2D ground plane and in turn constrain object detection within those ROIs. In-
teractions between different pedestrians are explicitly modeled using long-term
tracking trajectory candidates optimization and selection in a data association
manner. However, [24, 8–10, 14, 13] do not study the technical feasibility to em-
ploy depth cue to lead the tracker to effectively localize and segment an object
from a visually cluttered background without heavily trained object detectors.
Our approach attempts to use explicit stereo depth to segment an object from
depth map, which greatly leverages the robustness of depth cue under sharp
object appearance changes and low object-background contrast. No object de-
tection, ground plane estimation nor visual odometry information are utilized for
tracking, which results in a much simpler system. The main focus of this paper
is to develop a state-of-the-art depth-driven robust tracking method (beneficial
to other cues) rather than multi-cue integration and feedback based tracking
systems [20, 24, 8, 25].

3 Depth-based Figure-Ground Segmentation

We explore the robust handling of roughly continuous uniform depth for object in
space, suggested by depth cue. The precise depth estimation of non-informative
areas such as sky or ground are not required for object tracking. Thus we use
the stereo algorithm developed by [7] to generate dense depth map for tracking.

3.1 Depth-based Pixel Clustering

We observe that depth information depicts the coarse representation of the object
shape (e.g., pedestrian silhouette), which can be applied to segment the object
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Fig. 2. Depth distributions before (Left) and after (Right) depth clustering within
object region. Depth distributions are represented by depth value histograms.

from the background. In [24, 8], the dominant object depth is estimated with
the median depth d(di) = medp∈bboxi(p) within the bounding box bboxi that
encompasses the object. However, this simple method is not robust without
explicitly handling the object-level segmentation due to the unpredicted depth
distribution of the object. In such case, the outliers can shift the dominant depth
from interest region to the background. In our approach, we apply the mean shift
clustering technique [11] to group pixels by considering both their spatial support
and depth value, to generate reasonable depth groups and simultaneously attain
the modes of each group which can more accurately indicate the dominant depth
of the region. The feature space lies in the depth value of the pixel and the
multivariate kernel is defined below,

Khs,hd
(x) =

C

h2s × h
p
d

k(

∥∥∥∥xshs
∥∥∥∥2)k(

∥∥∥∥xdhd
∥∥∥∥2) (1)

where p is set to 3 to increase the weight of the depth cue and C is a constant.
Here we use Normal Kernel for both spatial dimension {xs} and depth cue {xd}.
A comparison result is demonstrated in Fig. 2. We can clearly see that spatial
depth grouping not only make the dominant depth value statistically more dis-
tinct, but also incorporates more object-affiliated pixels into the dominant depth
group, compared with the result without clustering.

3.2 Superpixel-based Segmentation with dominant depth group

Following section 3.1, we display the process of object support map generation
with dominant depth group and superpixels in Fig. 3. Because there usually
exists changes in object scale and location from frame to frame, we design a
loopy adjustment for object bounding box where the estimated bounding box
and segmentation result interplay with each other to acquire best foreground
segmentation.

In detail, given the previous rectangular object box Bboxt−1 and superpix-
els at t, we first compute the dominant depth group of superpixels Lt and its
value Dt at t as inliers via Bboxt−1. This is based on the assumption that the
object normally occupies most of the previous area Bboxt−1 in most sequences.
Then we expand the box scale to get EBboxt−1 which holds the same center of
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Fig. 3. The process of the depth-driven segmentation framework. Despite non-ideal
depth estimation in the object boundary areas, superpixels and depth cue interact
with each other to generate good object support map for foreground extraction.

Bboxt−1 but with constant β(> 1) times larger scale (e.g., 1.2). It includes more
superpixels in image proximity to verify whether they belong to the object. The
confidence of a superpixel sptr ∈ EBboxt−1, r = 1, 2, ... at time t, associated with
the object is calculated as

C(sptr) =

∑
i∈spt

r
DD(i)

N(sptr)
(2)

Note that DD(i) makes a binary decision whether pixel i belongs to the dom-
inant depth group (i.e., inliers DD(i) = 1 versus outliers DD(i) = 0), and
N(sptr) is the number of pixels of sptr. By combining all superpixels’ confi-
dences ∈ EBboxt−1, we can obtain a confidence-based object support map and a
new bounding box Bboxt0 which tightly encompasses all tested superpixels with
C(sptr) > 60%. However it is still possible that the EBbox(t− 1) may not incor-
porate all the superpixels with high confidence to the object (e.g., the object is
under-segmented). Therefore we use Bboxt0 as the initial window estimate, ex-
pand it to obtain EBboxt0 and repeat the above foreground confidence counting
and mapping update to compute more accurate Bboxt1. This process is iterat-
ed n times until convergence. Finally, we set Bboxtn as Bboxt where normally
n = 2, 3.

In summary, we utilize the depth information to classify superpixels which
preserve the inherent silhouette of the object and in turn accurately modify
the coarse foreground boundary corresponding to depth discontinuity; whereas
depth cue acts as a bridge to lead superpixels to find the geometric reliable object
group, since depth map is computed from binocular images geometry relations.

4 Multi-object Figure Parsing via Shape and Color

Depth-based figure-ground segmentation can extract the tracked object from
the background in most cases. However, outliers with similar depth values can
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Fig. 4. The pipeline of splitting and parsing scheme for depth blob. Here we only
display a part of the candidate set for better clarity. The result of similarity measure for
each candidate is showed in different colors. Warmer color represents higher similarity.

contaminate the dominant depth group. To address this problem, we propose to
split the depth blob into several foreground hypotheses and in turn test them via
a trained SVM shape filter [26]. Hypotheses that fail to satisfy the shape feature
of single objects are eliminated. Therefore, the dominant depth group is divided
into a collection of single object blobs. Finally the histogram-based template
matching scheme selects the best candidate with the highest joint space-color
and shape similarity. The entire process is illustrated in Fig. 4.

4.1 Support Vector Machines for Shape Filtering

We assume the direction of an object’s principal axis is vertical [27] which is
valid in most scenarios, although more sophisticated principal-axis estimation
methods can be employed. It is observed that a single object (e.g., a pedestrian
or a car) retains one dominant peak if we project the foreground segmentation
mask onto the vertical axis, while blobs containing multiple objects or objec-
t+background structures have multiple peaks. Motivated by the difference in
vertical shape patterns between single objects and more complicated cases, we
adopt Support Vector Machines to train an efficient single object detector using
the vertical shape features.

There are five steps to generate the vertical shape feature: 1) Given a fore-

ground hypothesis, its Y -coordinate centroid is first calculated asMy =
∑height

y=1 y×
H̃(y)/

∑height
y=1 H̃(y) where H̃(y) records the pixel number in the yth row; 2)

Count the number of pixels above My belonging to the foreground hypothesis i
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Fig. 5. Vertical shape feature of three classes. We use red curves to represent positive
feature plots and blue ones for negative feature.

Fig. 6. SVM classification and validation accuracy.

per bin alongX axis thus we obtain the histogramHVi(x) =
∑height

y=My
F̃ (x, y);x =

1, 2, . . . , w whose dimension w accords with the width of the hypothesis i. The
function F̃ (x, y) makes the binary decision whether pixel at location (x, y) be-

longs to foreground (i.e., inliers F̃ (x, y) = 1 versus outliers F̃ (x, y) = 0). It
is necessary to constrain the projection domain because vertical shape of ob-
ject’s upper part is more discriminative; 3) Since hypotheses with different
width have different dimensions of HV which cannot be applied in SVM, we
enlarge the dimension of HVi to EHVi with fixed length EL by linear inter-
polation; 4) Apply median operator to extract median between every K suc-
cessive bins EHVi for subtracting the EHVi to Vi(x) with the fixed length L:
Vi(x) = median(EHVi(K × x), . . . , EHVi((K + 1) × x));x = 1, 2, . . . , L and
K = EL/L(EL > L); 5) The sum of the dimension of feature vector is normal-
ized to 1 during training. LibSVM [26] is employed in our experiment.

In our experiment, we train two separate classifiers for pedestrian Cp as well
as car Cc, and one joint classifier for the union of pedestrian and car classes Cpc.
We manually label single object blobs with different poses and scales as positive
examples and the weakly connected masks of multiple objects (mainly 2 and 3 in
our training dataset) and object+background as negative examples. Fig. 5 shows
that the positive and negative feature distributions are significantly different.
The details on the sizes of the training and testing datesets and the validation
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classification accuracies are reported in Fig. 6. These three classes all achieve
high accuracies of 98.15%, 95.79% and 97.03% respectively. The performance of
the joint pedestrian and car classifier Cpc is as good as the separate classifiers
so it is kept as default. The empirical evaluation of Cpc on 10 testing sequences
shows that the model Cpc achieves stable and precise classification results.

Object Hypothesis Generation & Splitting: At runtime, we split the
segmented depth blob vertically 2 and generate multiple single object hypothe-
ses for SVM testing. Given a depth blob mask, we find the local minima of its
vertical projection histogram as hypothesized splitting axes denoted by {X̂i}.
The splitting axes serve as the boundaries of the candidates along the vertical
direction. Any subregion bounded by two hypothesized splitting axes is consid-
ered as a valid hypothesis for SVM testing. After hypotheses sampling and SVM
classification, single object blobs are returned for further selection. Randomly
perturbing on {X̂i} with small variance has no impact on the final performance.
An example is shown in Fig. 4.

4.2 Joint Space-Color Features and Similarity

Since foreground segmentation has preserved the inherent shape information
encoded by the object contour, we can fully exploit the joint appearance mea-
surement using all channels of space, color and shape. In order to alleviate the
negative impacts caused by the noisy object boundary segmentation which is
common in tracking, we use radial spatial histograms to reflect object shape dis-
tribution and integrate color similarity measure into it. The appearance model is
derived from St−1

max on time (t−1) as AM for tracking if there is no heavy partial
or full occlusion detected. More sophisticated template updating principles are
also applicable and we leave this as future work.

The calculation of space-color similarity measurement is described as fol-
lows. 1) We compute the centroid of St−1

max and subdivide St−1
max into M = 10

components per 36o in radial direction using centroid as the center. 2) The RGB
color histogram is calculated per bin thus we obtain HCt−1

max(m);m = 1, 2, ...,M
and each HCt−1

max(m) is a vector which encodes the joint spatial and color in-
formation. 3) For each bin, we simply count the foreground pixel number and
normalize it with the pixel number of St−1

max. Thus the spatial binned occupancy
map ratios Rt−1

max(m) are calculated and
∑

mRt−1
max(m) = 1. 4) We perform the

same process to obtain histograms HCt
k(m) for each hypothesis St

k. 5) We have
the aggregated similarity score as

Similarity(St
k;AM ) =

M∑
m=1

Rt−1
max(m)× S(HCt−1

max(m), HCt
k(m)) (3)

2 In order to reduce local structure noise caused by blob fragmentation and articula-
tion, we apply an isotropic Gaussian filtering to smooth the boundary of depth blob.
In our implementation, the low-pass Gaussian filter has a size of 15× 15 voxels with
standard deviation set to 5.
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where S(HCt−1
max(m), HCt

k(m)) is the Bhattacharyya coefficient between two his-
tograms.

5 Occlusion Handling

Occlusion can be reliably detected when the dominant depth value in immediate
previous object area has sharply changed. Consequently, the tracker will locate
the outlier blob (e.g., other pedestrians in closer distance to camera) which
results in the occlusion, and track it while actively searching for the original
target which may reappear near the location of the outlier blob (OB) later.

Occlusion Detection: We exploit two conditions where occlusion may oc-
cur, designated by flagocc = true. First, during tracking we monitor sharp
dominant depth change inside the bounding box at the previous frame to de-
tect occlusion. Denote the previous dominant depth as Dt−1 in bounding box
at Boxt−1 which is parameterized using its center location (x, y)t−1 and scales
(sx, sy)t−1. Occlusion status is flagged when

∣∣Dt−1 −Dt
∣∣ > G(Dt−1) where the

function G(Dt−1) returns a linear ratio of Dt−1. Thus in the first scenario, occlu-
sion is detected when the dominant depth value changes more than a significant
percentage of itself. Second, In some challenging scenes, the target may interact
with other objects with similar depth value when occlusion occurs. Therefore
we need to establish more elaborated strategies to resolve the occlusion de-
tection problem under this condition. If the joint appearance similarity score,
Similarity(St−1

max;St
max), suffers from a rapid decrease and the between-frame

translation distance in the 3D coordinates (from stereo vision) is abnormally
large, we consider the target occluded by the outlier blob.

Target Reacquisition: Based on the fact that the target is hidden behind
the front OB under complete occlusion until it reappears, our tracker will plant
depth seeds with same scale of the object before occlusion within and near the
immediate previous object area, and run the segmentation engine to find the OB.
Next we track this OB to keep an effective searching proximity for reacquiring
object. Without loss of generality, we assume that flagocc = true starts at
(t − 1). The tracker will record the object appearance model from St−1

max before
occlusion and relocate it when encountering similar appearance around OB’s
spatial occupancy. Object reacquisition runs by randomly sampling depth seeds
along the boundary area of ST

max in successive frames T = t − 1, t, t + 1, ..., to
see if it can identify and form uniform depth blob candidates S′Tk via superpixel
groups (applying the segmentation method to each seed as described in Section
3). If the best candidate’s similarity score maxk(Similarity(St−1

max;S′Tk )) is above
a certain threshold η, we relabel the depth blob as the object and reset the tracker
to the normal state flagocc = false.

6 Experiments

We first evaluate our tracker on 10 sequences (17 sub-sequences and 3000+
frames) from well-known binocular datasets [8, 15, 16]. These sequences include
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Fig. 7. Tracking results. The numbers for each tracker denote average errors of center
location in pixels. The best and second best results are shown in red and blue for each
sub-sequence.

Fig. 8. Quantitative evaluation on tracking accuracy (in pixels and error-to-scale ratio,
E/S(%); percentage of frames E/S < 10%). @82 means the tracker lose track of the
object at frame 82. The sequences whose (E/S < 10%)/F > 70% is highlighted in red.

most challenging factors in visual tracking: dynamic background, complete oc-
clusion, fast movement, large variation in pose and scale, shape deformation
and distortion. The quantitative evaluations of our tracker (DDT), superpixel
tracking [3] (SPT), P-N learning [12] (TLD), hough-based tracking [5] (HT) are
presented in Fig. 7. The codes of all competing methods are publicly available
3. Fig. 8 shows statistics on mean, maximum distance and standard derivation
(std.) of the error |∆| from the tracked object center to manually annotated
ground truth center in pixels and the mean of error-to-scale ratio (i.e., E/S(%)
= |∆|/sqrt(S2

x + S2
y) where Sx and Sy are the lengths of an object annotated

bounding box in x or y coordinate respectively.) of 3000+ labeled frames.
Our absolute object tracking errors (in pixels) are highly competitive or bet-

ter than most recent results [3, 12, 5], which strongly proves the need to use depth
cue in dynamic scenes. Although the maximum error in some sequences are rel-
atively high due to depth noise, the overall tracking performance is stable and
outstanding with low mean of error-to-scale ratio. Some comparison of tracking
results are shown in Fig. 9.

In recent years, the depth-assisted systems [13, 14, 10] achieve better detec-
tion recall rates on the same datasets [8] and also outperform in other scenarios,
so we choose to use the numerical results from [13, 14, 10] and compare our re-
call rate (successful tracked objects/total annotations), derived from the same
evaluation criteria in [8, 13, 14, 10]), with the defined best recall rates (false posi-

3 SPT:http://ice.dlut.edu.cn/lu/iccv spt webpage/iccv spt.htm.
TLD:http://info.ee.surrey.ac.uk/Personal/Z.Kalal/tld.html.
HT:http://lrs.icg.tugraz.at/research/houghtrack/index.php
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Fig. 9. Tracking results. The results by our tracker, superpixel tracking [3], P-N learn-
ing [12], hough-based tracking [5] are represented by red, yellow, blue and green rect-
angles.

Fig. 10. The table shows the recall rate (successful tracked objects/total annotations)
for our tracker and three competing methods [13, 14, 10] (false positives/image = 0.5).
The best and second best results are displayed in red and blue for each sequence.

tives/image=0.5) in their ROC curves. Here we use Ground-truth [8] to initialize
our tracker’s location window on the first frame where object appears, which is
also used in [13, 14, 10]. For the rest of the testing sequences, we initialize the
object location window manually. All comparative experiments are conducted
using the same initial location. Since our method is not based on detection, we
cannot further provide ROC curve analysis and just take part of the annotations
(1997 from 5193 of Seq. Bahnhof, 1002 from 1828 of Seq. Sunny Day and 1187
from 2697 of Seq. Bahnhof) for testing. As can be seen in Fig. 10, our tracker
achieves better results with higher recall rate in all three datasets.

Self-recovery from figure corruption: In Fig. 11, due to large shadow or
untextured area caused by strong sunlight, depth cue frequently fails to provide
valid uniform depth value within object area, which results in inaccurate figure-
ground segmentation (e.g., frames 36, 89, 168). Even under this condition, depth
cue can still lead the depth-driven tracker to reliably locate part of the object
with small amount of outliers, while saving the previous appearance model when
the scale changes rapidly. When the tracker encounters more desirable frames
(e.g., frames 45, 95, 171) with uniform depth in object region later, the figure
can recover from inaccurate segmentation in previous frames by crawling along
uniform depth blob of the object.

Comparison of Depth and Appearance Cue: In Fig. 12, we show the
performance of depth and appearance cues in support of the tracker to locate
the object. To accurately depict the fluctuation trend of appearance cue, we take
ground truth of the object to calculate the similarity value using the method
described in section 4.2. We can see that when the appearance model sharply
changes (e.g., similarity measure value between two frame below 0.7), the depth
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Fig. 11. Tracking results of Sunny Day sequence. The original object area and its
surroundings, the corresponding depth map, the segmentation results of the “woman”
object and the “man” object, are respectively displayed in the vertical direction for
each frame. Successful object tracking and segmentation recovery from severe depth
noise are demonstrated.

cue consistently maintains smooth variation, which is more favorable for robust
tracking. The key frames with rapid appearance changes are shown in Bottom-
left of Fig. 12 (also highlighted by green ellipses in Top graph). The key frames
in the bottom-right of Fig. 12 (highlighted by purple ellipses in Top graph),
most parts of the object are occluded so that both depth and appearance cues
have abrupt changes, which indicates occlusion occurrence. Then the tracker
switch the tracking target to the OB encompassed by blue bounding box while
continuously searching in the proximity region until object reappears.

Failure Case Analysis: The tracker could lose the object when more com-
plex occlusion patterns (e.g., multiple spatially-correlated OBs) occlude the ob-
ject and prevent it from reappearing close enough to the OB. In Fig. 13, when
the object is mostly visible at frame 245, it is out of our reacquisition searching
range, interleaved by another OB in between. This can be improved by designing
elaborated OB-OB and object switching strategy (e.g., data association model).

7 Conclusion

In this paper, we present a robust tracker using explicit stereo depth with oc-
clusion handling for tracking a single object in dynamic and crowd scenes. We
successfully validate the proposed method using several stereo video sequences
under various challenging conditions (indoor/outdoor) such as occlusions, illu-
mination and appearance changes, etc. For future work, we will explore more
sophisticated online appearance models [29, 3] and multi-cue integration sys-
tems.
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Fig. 12. The top graph shows the performance of both depth cue and appearance
cue in support of tracker to locate an object [28]. Blue curve indicates the change of
dominant depth value of foreground region captured by our tracker along a 301 frame
sequence and the red curve depicts the fluctuation of object appearance.

Fig. 13. Failure case due to more than one OB (in blue box) occluding the object
successively at frame 241 so that the tracker cannot regain the target around the first
OB at frame 245.
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