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Abstract
Particle filtering is a very popular technique for sequen-

tial state estimation problem. However its convergence
greatly depends on the balance between the number of par-
ticles/hypotheses and the fitness of the dynamic model. In
particular, in cases where the dynamics are complex or
poorly modeled, thousands of particles are usually required
for real applications. This paper presents a hybrid sam-
pling solution that combines the sampling in the image fea-
ture space and in the state space via RANSAC and particle
filtering, respectively. We show that the number of particles
can be reduced to dozens for a full 3D tracking problem
which contains considerable noise of different types. For
unexpected motions, a specific set of dynamics may not ex-
ist, but it is avoided in our algorithm. The theoretical con-
vergence proof [1, 3] for particle filtering when integrating
RANSAC is difficult, but we address this problem by analyz-
ing the likelihood distribution of particles from a real track-
ing example. The sampling efficiency (on the more likely ar-
eas) is much higher by the use of RANSAC. We also discuss
the tracking quality measurement in the sense of entropy or
statistical testing. The algorithm has been applied to the
problem of 3D face pose tracking with changing moderate
or intense expressions. We demonstrate the validity of our
approach with several video sequences acquired in an un-
structured environment.

Key words: Random Projection, RANSAC, Particle Fil-
tering, Robust 3D Face Tracking.

1 Introduction
In recent years there has been a great deal of interest

in applying Particle Filtering (PF), also known as Conden-
sation or Sequential Importance Sampling (SIS), to com-
puter vision problems. Applications on parameterized or
non-parameterized contour tracking [11, 12, 20], and human
tracking [2, 14] have demonstrated its usefulness.

However, the performance of SIS depends on both the
number of particles and the accuracy of the dynamic model.
Given a specific error margin, the number of the particles re-
quired are generally determined by the dimension and struc-
ture of the state space [5]. A typical 6-DOF tracking prob-
lem usually requires thousands of particles [5]; reducing
the number of particles by training a finely tuned dynamic

model is not trivial [16], sometimes even impossible.
On the other hand, the RANSAC method [6] is often ap-

plied as a robust estimation technique. The final stage in
RANSAC is to apply a robust estimator that results in a
good solution which includes as many non-outliers as possi-
ble. However, RANSAC by itself does not preserve multiple
solutions from frame to frame in a probabilistic inference
framework.

In our proposed algorithm RANSAC-PF (or RANSAC-
SIS), randomly selected feature correspondences are used to
generate state hypotheses between pairs of frames in video
sequences. However, instead of looking for a single best so-
lution, the projections are used to guide the propagation of
the resampled particles. These particles are then reweighted
according to a likelihood function and resampled. Con-
sequently, the combined process not only serves as a ro-
bust estimator for a single frame, but provides stability over
long sequences of frames. The convergence property of
RANSAC-PF is empirically analyzed.

The evaluation of quality is an issue of critical impor-
tance for all tracking problems, stochastic or deterministic.
With the sampling concept, it is straightforward to infer the
tracking quality from the state parameters’ posterior prob-
abilistic distribution. We define an entropy-based criterion
to the statistical quality characteristics of the tracked den-
sity function and evaluate it numerically. More importantly,
the entropy curve computed during tracking can help us ex-
tract some well tracked frames as exemplars [20]. When
necessary, these exemplars are then archived to stabilize the
tracking1.

The remainder of this paper is organized as follows. Re-
lated work is presented in section 2, followed by a de-
scription of a 3D face tracking application that uses our
RANSAC-PF algorithm. We also address our entropy and
statistical testing based criterion for tracking quality evalua-
tion in this section. Section 4 shows some experimental re-
sults. Finally, we offer conclusions and discuss future work.

Notation: �
���
� is the current state of the i-th particle at

1Much of computer vision research can be regarded as lying on a con-
tinuum between explicit models and exemplars [20]. To extract exemplars
which are tracked statistically well, we discuss the tracking quality evalua-
tion issue from the tracked posterior probabilistic distributions.
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time �, while � ���
� represents the current and previous states

of the i-th particle at time �. � ���
� � ������ � � � � � �

���
� �. As-

suming a second order Markov property, � ���
� can also be

represented as �������� � �
���
� �, or ������ � �

���
� �, where ����� �

�
���
� � �

�����
� .

�
���
� is the normalized weight for the i-th particle at time

�. These weights collectively represent the particles’ poste-
rior probability distribution.

���� delegates the current observation (image features, for
example). ���� � ������ � � � � � �

���

�����, where� ��� is the num-
ber of detected features at time �.

2 Related Work
Deterministic parameter estimation algorithms normally

produce more direct and efficient results when compared
with Monte Carlo-style sampling methods. On the other
hand, deterministic algorithms are unfortunately easily bi-
ased and cannot recover from accumulated estimation er-
rors. Robust estimators, such as LMedS [23] and MLESAC
[18], follow the strategy of ”Winner Takes All” and get the
maximum likelihood (ML) result. However, those estima-
tors are not suitable for a sequential estimation problem for
a dynamic system because the ML estimation error in each
stage can accumulate and result in failure.

It is shown in [10] that sequential importance sampling
or particle filtering may have non-zero probability to con-
dense into an incorrect absorbing state when the number of
samples are finite, even though PF-like techniques are ac-
curate in the asymptotic sense. In our work, we propose
a hybrid sampling approach to achieve a good balance of
sampling efficiency and dynamic stability. From a parti-
cle filter viewpoint, random geometric projections with the
RANSAC sampling of image features and importance re-
sampling of � ��� guide the time series evolution of state
particles to achieve the trade-off between variance and bias.

There are some papers integrating particle filters with
variational optimization or observation-based importance
function. For the sake of computational efficiency, Sullivan
et al. showed in [17] that random particles can be guided by
a variational search, with good convergence when the image
differences between frames are low. They used a predefined
threshold to switch the probabilistic or deterministic track-
ing engines, which could be problematic. Isard et al. [12]
presented an approach (ICondesation) to combine low-level
and high-level information by importance resampling with a
particle filter. Our most related work is Torr and Davidson’s
research [19] on structure from motion by hybrid sampling
(IMPSAC). They built a hierarchical sampling architecture
with a RANSAC-MCMC estimator at the coarse level and
a SIR-MCMC estimator at the finer levels. In this paper,
we use sequential sampling-importance-resampling (SIR)
technique to regularize and smooth the object pose estima-
tion from spatial RANSAC sampling with significant ob-

(a) (b) (C)

Figure 1: An example of RANSAC sampling of feature points (red
dots are inliers, and green squares are outliers.) to track planar
motions.

servation noise2. Our technique considers the robust esti-
mation problem from the viewpoint of time series analysis,
while Torr et al. constrained the output of RANSAC with a
MCMC formulated building model in 3D scene reconstruc-
tion.

There are various solutions for face pose tracking. Here
we mainly discuss two techniques: SSD (sum of squared
distances) and particle filtering based tracking. SSD [7, 13]
has attracted much interest and has become a standard tech-
nique for various tracking problems. However, a single tem-
plate can not cover a large range of motions. Dynamic tem-
plate updating is usually a non-trivial problem and causes
error accumulation. Moreover, the relative motion between
frames is required to be smooth enough to satisfy the lo-
cal linearity prerequisite of Jacobian approximations in SSD
tracking. Jumps can cause loss of tracking. Moon et al. [14]
proposed a new approach for the image likelihood measure-
ment based on the shape distance between the reprojected
eye and mouth curve with the detected curve in the im-
age. This observation model is simple and efficient to be
implemented, but may have some problems with large out-
of-plane rotations and expressional changes.

We propose a new method to achieve comparable track-
ing results [13] under many strong distractions, with much
fewer (�� � ���) particles, auto-recoverable for a wide-
range full 3D tracking problem3. Small jumps (up to ���)
between consecutive frames is also not an issue for our ap-
proach.

3 The RANSAC-PF Algorithm
3.1 Motivation

In order to explain our approach to tracking, consider the
situation shown in Figure 1. Here we consider in-plane rota-
tions and translations of a planar object through three frames

2We consider three sources of noise in the probabilistic robust tracking
work; 1) image feature matching outliers mainly due to expression defor-
mations; 2) the inaccuracy of our 3D face model; 3) manual alignment
errors for initialization. The hybrid sampling strategy is used to handle the
biased or unbiased noises, playing the similar role as a robust estimator.

3Face pose tracking is a well-studied topic, but still remains diffi-
cult for a deformable subject with non-semantic, wide-range motions.
Here we attempt to get 3D pose estimates from a moving talking face.
Expressional deformations are treated as clutter noise. Please refer to
http://www.cs.jhu.edu/ lelu/RansacPF.htm for more results.
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Figure 2: Feature based tracking for a planar patch’s cyclic in-
plane motion sequence. Blue represents ground truth of rotation
angles; black and pink represent the results of RANSAC with and
without outliers; red (MAP) and green (MWP) (closely superim-
posed with blue) are results for RANSAC-PF .

of a video. In each frame, a set of feature points �� ���
� � are

detected on the object. Some of these features are common
among frames, and some are inconsistent or spurious. We
develop a RANSAC filter for computing incremental mo-
tion between successive frames (to simplify features match-
ing), and then integrate these solutions over time to compute
a state estimate. While this is computationally convenient,
the lack of distributional information means that a single in-
correct estimation step can be disastrous. More precisely,
note that RANSAC tries a number of subsets of features;
while the probability that at least one of the subsets yields
an adequately correct result can be set to a high probability 4

	 by adjusting the tolerance threshold, the overall probabil-
ity of correct solutions over � frames, 	 �� quickly decreases
to zero as � grows. One way to avoid this problem is to
include a time series model that maintains and regularizes
multiple solutions over time. This is exactly the goal of our
RANSAC-PF algorithm.

In Figure 2, we show the simulated results of RANSAC
while tracking a planar patch. The blue line is the ground
truth of in-plane rotation angles, the magenta line is the
RANSAC tracking result when sub-pixel feature matching
accuracy is unavailable, and the black line is the result
when matching outliers are introduced. We also test the
RANSAC-PF algorithm in the synthesized sequence: the
red line is the trajectory of particles with maximal weight
(MAP) and the green line is the mean trajectory (MWP).
In this simple case, drift in the parameter estimation from
RANSAC is clearly visible, while there is no apparent drift
with RANSAC-PF of 100 particles.

For a second example, we use a particle filter to track a
sequence of simulated data. A 2nd order Markov dynamics
is adopted and the observation likelihood function is based
on the difference with the ground truth 5. We see that the per-
formance of the particle filter degrades dramatically when

4
� � � only happens without existence of any kind of noise.

5This observation measurement is near perfect, because the particle
weights are penalized respect to their bias with the ground truth.

the number of dimensions of the state space increases. Fig-
ure 3 shows the simulation results for a particle filter tested
on various dimensions. Qualitatively, we see that even when
estimating only 2 parameters, a 200-particle filter tends to
compute poor solutions after 200 to 300 frames. It is ev-
ident the results for 6 DOF tracking are meaningless with
800 particles. This is not inconsistent with actual practice,
where a few thousand particles are used for 2D (four param-
eter) person tracking applications [5]. King et al. [10] also
addressed the convergence problem of particle filter with fi-
nite samples.

3.2 The General Algorithm

a) From the initial results ������ �����, construct particles for
the first two frames.

� �
���
� � ������ 
 � �� � � � � �

� �
���
� � � ������� ��� 
 � �� � � � � � , where� is a Gaus-

sian Normal diffusion function.

b) From the previous particle set ��������
� � �

�����
� ������ at

time ���, construct a new particle set ������� � �
���
� ������ for

time � by

1. For 
 � �� � � � � � , generate ����� by

(a) Randomly select ������� with probability ������
�

(b) Randomly select a subset � of � ��� features
from ���� by RANSAC.

(c) Let ����� � �����
�����
� ��

2. For 
 � �� � � � � � , compute �����

� � ��������
���
� � and

�
���
� � �

����

� �
��

��� �
����

� .

3. Compute the empirical entropy criterion � ��� �

���

��� �
���
� 	
�� �

���
� , or perform other statistical

testings.

Figure 4: The RANSAC-PF algorithm

We consider the object being tracked as described with
known models but unknown parameters (or states) �. Given
an observation ���� of the object for each image frame �, the
objective is to estimate the object state ���� at every time-
step (frame) from  ��� � ������ � � � � �����. Assume that the
underlying observation and dynamic models � and � are
known:

��� � � ������ �� (1)
���� � ��������� �� (2)

where the noise terms � and � have known or assumed
distribution. We note that the image likelihood function
������������ � ������������ and the state propagation
function �������������� can be derived from this stated in-
formation.
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(a) (b) (c) (d)
Figure 3: We simulate the tracking accuracy with varying numbers of particles in 2, 4 and 6 state space dimensions. Because data is
synthesized, the ground truth is known and used to observe the likelihood via an independent Gaussian process assumption. To illustrate,
only the tracking results of parameter 1 (no physical meaning) is shown; similar results are obtained for other parameters. (a) 200 Particles
for 2 parameters (b) 200 Particles for 4 parameters (c) 200 Particles for 6 parameters (d) 800 Particles for 6 parameters. Colors code same
information as in figure 2.

Let ���� be a set of � ��� elements ������ �:

�
���
� � ����

���� ��� 
 � �� � � � �� ��� (3)

We assume that ���� can be computed from �, a subset of
all � ��� elements of observation. Let �����

������ repre-
sent this inverse of the above equation .

We introduce a set of particles ������ ����� and their rel-

ative weights �����
� ����� that are maintained for all time-

steps � as a representation of the posterior distribution
�����������. Naturally, any function � of � ��� can be esti-
mated by

������� �

��
���

�����
���
� � (4)

With these definitions, we can see from Figure 4 that
RANSAC-PF operates roughly as follows. For each frame
�, particles are generated using � by randomly selecting �

and � ����� and computing � ���� A graphical model repre-
sentation of the algorithm is illustrated in Figure 6 (b).

Optionally, some other particles are sampled from the
dynamic model ��� ����������� using randomly resampled
particles of� ������ These two sets of particles can be mixed
together. Weights ����

� are then computed using the image
likelihood function � as is normally done in importance
sampling. An entropy criterion or other testing to evalu-
ate the tracking result from the particles is also computed.
Note that our RANSAC-PF algorithm does not necessarily
need to be combined with the standard particle filtering, but
this combination makes it convenient to compare these two
algorithms in the following experiment section.
3.3 Convergence Analysis

There are two important assumptions for the conver-
gence analysis of sequential importance sampling, or par-
ticle filtering-style algorithms [3, 1]. First, the impor-
tance function is chosen so that the weights of particles
are bounded above. No super-nodes with unbounded high
weights exist that may dominate the distribution and re-
sampling. Second, selection scheme does not introduce too
strong a discrepancy.

The first prerequisite is easily satisfied by the indepen-
dent Gaussian process assumption for likelihood measure-

ment (i.e. computing the particle weights in factor sampling
[11]). Each process returns a real value between 0 and 1,
and the number of processes is limited. On the other hand,
the computational efficiency and convergence of particle fil-
ter algorithms heavily depend on the selection (resampling)
scheme. The ideal case will be that the limited number of
particles are sampled from the high peak areas in the pos-
terior density resulting in an estimated expectation6 with a
tight variance. The limited computational resource is not
wasted in the unlikely zones. We also require having low
bias to obtain good tracking results, so randomness is in-
troduced around high density peaks. The trade-off between
variance and bias must be subtly handled.

From Figure 5, we show the particles’ likelihood val-
ues (weights in factor sampling [11]) extracted from a face
video sequence. For comparison, red circles represent par-
ticles driven by RANSAC-PF and blue stars are particles
propagated through a second order Markov dynamics. In
Figure 5 (a), there are a few high weight blue stars appearing
in the cloud of red dots. As time passes, both red and blue
particles initially decrease their weights in (b), then stabilize
their weights at a reasonable level. (c) depicts a hard-to-
track frame with very poor object appearance 7 resulting in
even lower weights. However, the clear recovery is found in
(d) where the particles’ likelihood values return to the same
level as (b). The likelihood distribution of blue particles is
normally a very few high stars with mostly low ones, while
the red particles maintained by RANSAC-PF have an oppo-
site distribution. In our experiments, multi-modal estimates
of particles are converged to have a dominant result with mi-
nor (low-weighted) noisy estimates most of the time. When
distractions are very strong, we obtain many estimates float-
ing around the true value, and no dominant estimate exists.

Our intention is not to give a theoretical convergence
proof, but attempt to illustrate the basic concept of how
RANSAC-PF works by an example. The possibility of poor
sampling is lower for a distribution with more high like-

6The expectation is also a random variable.
7The subject’s face is turning down deeply, so the face region is small

and highly tilted. It causes difficulties for any face tracker.
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lihood particles [3, 1]. Most of the time, the resampling
process on very low weight particles generates a poor re-
sult. Similarly, Tu et al. showed that using data-driven tech-
niques (like RANSAC in our case), such as clustering and
edge detection, to compute importance proposal probabil-
ities (for particle filter in our case), effectively drives the
Markov chain dynamics and achieves tremendous speedup
in comparison to the traditional jump-diffusion method [21].

3.4 Tracking Evaluation
Once the tracking results are obtained, our next step is

evaluating the soundness of the results. By looking into the
likelihood function ��� �����

���
� �, we can calculate a fitness

value for each particle ����� . An intuitive argument can be

whether there exists at least one particle �
���
� with the fit-

ness ������������ � above a certain threshold. However, we
prefer to find a more sound answer if possible, using the
property of the obtained posterior density �� ���

� � �
���
� � of the

state variables.

3.4.1 An Entropy-Based Criterion for Tracking
While the mean of weighted particles can serve as a rep-

resentative or estimate of the set of particles, it is the entire
set that does the tracking. To evaluate how well it is doing,
we can introduce an entropy based criterion. Since we are
tracking only one object configuration, a single and sharp
peak of the posterior distribution is ideal, while a broad peak
probably means poor or lost tracking. Entropy can be used
as a scale to discriminate these two conditions. Low entropy
means less tracking uncertainty, thus better performance.

Nevertheless, the weighted particles ���� ������� are only
a set of samples from a probability distribution ����, not the
distribution itself. There are a number of ways to estimate
the entropy of underlying distribution. The simplest method
is to compute the entropy directly from weights of discrete
samples:

�� � �
��
���

�� 	
�� ����� � �
��
���

�� 	
�� �� (5)

�� converges to � when � approaches infinity, but they
may have a significant difference when� is small. An alter-
native in this case is to include a window function to spread
the support of a particle like a kernel. We have performed
numerical evaluations that suggest there is no significant dif-
ference between these two methods with �� � ��� particles.
While the entropy itself is a good indicator, we sometimes
need to better discriminate between unimodal and multi-
modal distributions. To do so, we artificially merge any pair
of particles into one super-particle provided they are near
enough in state space. In this way, we further lower the
outputs of entropy-estimate functions for single mode dis-
tributions; thus promoting them.

In our experiments, the entropy curve is very stable most
of the time as expected, indicating the stable tracking per-
formance. For the extreme cases (Figure 5 (c)), the entropy

value does increase.

3.4.2 Statistical Testing for Mode Detection
Though particle filtering is well known to tackle the

non-Gaussian tracking problem, we may still want to test
whether a single Gaussian is a valid posterior assumption
for a certain frame. For a single object tracking problem, the
current frame computing result can be considered favorable
if the tracking density can be well approximated by a sin-
gle Gaussian with tight variance. Furthermore, well tracked
frames can be used as exemplars to build an adaptive multi-
view object model [15] for many purposes.

We address the problem as verifying whether a Gaussian
mixture model (GMM) can achieve a statistically superior
approximation for tracking posterior density, compared with
a single Gaussian model. Since we are only concerned with
whether the distribution is unimodal or multi-modal, the
testing on 1 or 2-component GMM is adequate. This model
selection problem can be solved by evaluating the condi-
tional mixture density (log-)likelihoods of 1 or 2-component
GMM via Expectation Maximization [9]8.

Alternatively, the modality of the tracking density may
be observed directly by detecting whether the particle of
maximum a posterior converging to the estimated posterior
expectation, as an empirical measure. It is clearly shown
from our videos that this convergence (unimodal) is mostly
kept in our real experiments, except for the poorly tracked
frames.

4 Experiments on 3-D face tracking
The diagram of our face tracking system is shown in Fig-

ure 6 (a). We use a generic triangle based face model, which
is highly parameterized and can be easily manipulated with
geometric modeling software. Different from [22], the ap-
proximate 3D face models are sufficient to achieve the rea-
sonable good tracking results in our experiments, thanks to
the stochastic property of RANSAC-PF.

When initiating tracking, we register the generic 3D
model to the first video frame by manually picking 6 fidu-
cial (mouth and eye) corners in the face image. A two-view
geometric estimate [4, 23] is then computed for the face
pose on the next frame, followed by a Gaussian diffusion.
Consequently, ����� and ����� are obtained as the state vectors
that encode the face pose (three components for rotation and
three components for translation).

4.1 Feature Detection and Random Projection
In our face tracking application, we first detect Harris-

like [8] image corner features in two frames. Then, a cross
correlation process for feature matching and a rough fea-
ture clustering algorithm based on epipolar geometry are
performed to form an initial set of corresponding feature
pairs. To compute a relative pose change, we spatially and
uniformly sample 9 matched image features between two

8The difference is that particles are data samples with different weights,
making non-equal contributions for the mixture density modelling.
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(a) Frame 3 (b) Frame 105 (c) Frame 360 (d) Frame 425
Figure 5: The likelihood distribution of particles in a video sequence. There are 100 (blue star) dynamics driven particles and 100 (red
circle) RANSAC-PF guided particles).)
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Figure 6: (a) Diagram of RANSAC-PF as applied to 3D face pose tracking. (b) The graphical representation of RANSAC-PF where the
new state �� is a function of new observation ��, former observation ���� and state ����.

(a) (b) (c) (d) (e)
Figure 7: The initialization process of face tracking. (a) The initial frame is manually aligned with a 3D face model using 6 fiducial
corners. (b) The next frame is tracked through the two-view motion estimation. The RANSAC-PF tracking begins from the third frame. We
show the Maximum A Posterior (MAP) result with a red color reprojected face mesh overlaid on the images, while the mean of weighted
particles (MWP) with a black color. (c)MAP and MWP are different at the beginning frames of the RANSAC-PF tracking. (d) MAP and
MWP converge together quickly. (e) Image features are selected spatially and uniformly via RNASAC.

frames by RANSAC, illustrated in Figure 7 (c). We now ob-
tain a set of rigid feature matches ��������

� ��
���
� ��, where

�
�����
� and ����

� are a pair of (probably non-perfectly)
matched points in two successive images. For each point
�

���
� in the reference image, we cast a 3D ray from the

camera center through that point, and compute the intersec-
tion�� of that ray with the face mesh model, using a resam-

pled (factor sampling) pose state �
�����
� at frame �� � ��.

The relative pose �T� �

�
�R�

�t�
0� �

�
can then be computed

according to the following equation

�� �T�
��� � � ���

� (6)

where ��� � ���� � ��
� and ��� � ���

� � ��
� . The intrinsic

matrix �, the standard projection matrix � , �� and��
� are

known. Each of the above equations gives two constraints

on �T�. We compute �T� with a linear least-squares technique9

described in [4]. A pair of � �R�� �t�� corresponds to a certain

particle as � ���
� . Therefore, this linear geometric projection

behaves as a bridge between the propagation of state parti-
cles from �

�����
� to �

���
� � 
 � �� � � � � �� on frame �. We

call this process random projection (RP).

4.2 Dynamics and Image likelihood
Image observations are modelled as a Gaussian process.

With each �
���
� and its former state history �

�����
� , we can

project the position of image point features at image ��� ��

9We use 9 as the number of image features for the random projection
in our algorithm. In theory, 3 is the minimal possible number to compute
the 3D object pose. By considering the sub-pixel matching errors, too few
(ie, 3) features can not provide stable geometric estimates normally. On
the contrary, too many features lose the advantage of robustness by random
sampling. We empirically find 9 is a good number for the trade-off. More
theoretical and experimental analysis will be explored for future work.
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to image ���. The reprojection errors are the 2D Euclidean

distances ��� between image features �����
� � �

���
� � at frame t

and reprojected image features ������
� � ��

���
� �.

��� � ������ � ������ ��  ������ � ������ �� (7)

Then the conditional probability for likelihood is

������ 	 �

���

�
�

��
�
�
�

��� (8)

where the standard derivation � can be estimated from the
set of all feature reprojection distances ���� for each pair

of ������� and ����� . In the experiments, we set � to ��� pixels
for simplicity. No apparent improvement was found when
estimating � from data.

4.3 Results of Our Algorithm
We use a simple constant velocity model to guide the

temporal evolution of particle filtering.
In Figure 7, we show a short face tracking video (Com-

parison.avi) with large out-of-plane rotations. In this case,
a subject’s face is considered as a rigid object without fa-
cial expressions. From this figure, reasonable tracking ac-
curacy10 is achieved, though the generic face model is not
very accurate for the given subject and feature mismatch-
ing does exist. After few frames, the estimates of MAP and
MWP estimates converge together.

For the convenience of comparison, we generalize our
RANSAC-PF algorithm with particles guiding by a second
order Markov (constant velocity) dynamics in parallel (see
the dashed line in Figure 6). The testing results on the above
short sequence (Comparison.avi) is shown in Figure 8. We
name the particles driven by RANSAC-PF RP (random pro-
jection) particles, and the others as DP (dynamic propaga-
tion) particles. Note that the constant velocity dynamics can
be considered as a reasonable assumption for this simple
yawing video sequence. Nevertheless, the tracking in Fig-
ure 8 (c) is quickly lost due to the relatively small number of
particles according to the 6-DOFs required by 3D tasks. On
the other hand, our algorithm performs better with the same
or smaller number of total particles. From Figure 8 (a) and
(Comparison.avi), good tracking results are obtained with
100 RP particles and 100 DP ones. When reducing the RP
particles to 10 in Figure 8 (d), slight tracking accuracy is
lost for MWP and the MAP results become to flicker around
MWP estimates. It means that the computed MWP is stable
and MWP is not. Here 10 can be thought of as a lower bound
for the number of RP particles. The decrease of DP parti-
cles (comparing (b) to (a) in figure 8) does not apparently
influence tracking quality.

We also test our algorithms on tracking people faces from
different races. Reasonably good tracking performance is
achieved. Two video sequences (cher.avi, donald.avi) are

10Since we do not have the ground truth for tracking, no explicit numer-
ical comparison is provided. The validity is shown by overlaying the 3D
face mesh model to images.

linked in author’s website. (Cher.avi) has moderate expres-
sion changes and results in better tracking, compared to
(donald.avi), where intensive expressional deformations oc-
cur. Both of the videos (tracked with 80 particles) have long
rotation ranges over �� � �� seconds, and subjects move
their face arbitrarily. Automatic recoveries from poorly
tracked frames can also be found. To test the robustness
to misalignments, we manually align the first frame in the
tracking sequence with some moderate errors. Our algo-
rithm shows the remarkable stability from Figure 9. The
initial registration errors do not increase with time, and a
significant accumulation of tracking errors is not observed.
A general 3D face model is used for tracking though partic-
ular adjustments of face model to a subject may improve the
tracking.

In our experiments, the relative motion between succes-
sive frames is not required to be very smooth. We have con-
cluded that random projection is most successful when han-
dling rotations of �� to �� degrees. One way to test this
robustness is to simply leave frames out. In experiments,
images used for tracking can be sub-sampled every 3 to 10
frames.

5 Summary and Future Work
In this paper, we have presented a stochastic method for

full 3D face tracking with a small number of particles and no
learned dynamics. RANSAC-based image feature selection
is integrated within the Monte Carlo sampling framework.
The convergence issue and tracking quality evaluation prob-
lem are also discussed.

Our RANSAC-PF algorithm does not depend on the ex-
istence of a specific, fine-tuned dynamics for the diverse ob-
ject moving sequences. Furthermore, our algorithm can help
the labelling problem for the new tracking data, which can
be valuable for dynamics learning and motion recognition.

We also intend to extend our work to multi-face tracking.
Our local feature matching algorithm is expected to distin-
guish features from different faces by appearance and spa-
tial neighborhood constraints. This step can help RANSAC
generate proposals from each person’s matched feature set
respectively. Data association problem will be much easier.

Finally, finding suitable methods to compute importance
proposal probabilities for Monte Carlo-style algorithms is
our emphasis on future work.
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