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Abstract
We present a model- and exemplar-based technique for

head pose tracking. Because of the dynamic nature, it is
not possible to represent face appearance by a single tex-
ture image. Instead, we sample the complex face appear-
ance space by a few reference images (exemplars). By tak-
ing advantage of the rich geometric information of a 3D
face model and the flexible representation provided by ex-
emplars, our system is able to track head pose robustly un-
der occlusion and/or varying facial expression. The system
starts with a simple learning stage. The user moves his/her
head with a neutral expression in front of the camera within
the working space. Our system automatically builds a per-
sonalized 3D face model by fitting a generic mesh model to
a near frontal facial image, and acquires a few reference
images at distinct poses to sparsely sample the facial ap-
pearance space. When tracking the head under occlusion
and varying expression, we match the current view against
the most appropriate reference image according to the pre-
dicted pose, which is much easier and more robust than if
only a single texture image is used. A robust motion seg-
mentation algorithm is used to separate point matches cor-
responding to rigid head motion from those corresponding
to facial deformation. The head pose can then be reliably
estimated from the rigid-motion points with the help of the
3D face mesh model, even when the number of points is
small. Since we use reference images during tracking, the
accumulative error inherent in frame-by-frame tracking is
avoided and more accurate pose estimation is achieved. We
demonstrate the validity of our approach with several video
sequences acquired in a casual environment.
Keywords: Head pose determination, head tracking, model-based
tracking, exemplar-based tracking, faces and gestures, facial ex-
pression.

1. Introduction
In the last few years, 3D head tracking in a video se-

quence or relative pose estimation from multiple images has
been recognized as an essential prerequisite for robust fa-
cial expression/emotion analysis, synthesis and face recog-
nition. 3D head pose information is also very important
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for user attention detection, vision-based interface and head
gesture recognition. In multimedia applications, video cod-
ing also requires 2D or 3D motion information to reduce the
redundant data [15].

When there is no expression change on the face, rela-
tive head pose can be solved as a rigid object tracking prob-
lem through traditional 3D vision algorithms for multiple-
view analysis [19, 33, 18]. However, in practice, expres-
sional deformation or even occlusion frequently occurs, to-
gether with head pose changes. Furthermore, facial expres-
sion analysis or face recognition also needs to deal with
the alignment problem between different head orientations.
Therefore, it is necessary to develop effective techniques for
head tracking under the condition of expression changes.

The remaining part of the paper is organized as follows:
Section 2 reviews several face tracking works reported in
the literature. Section 3 provides an overview of our head
pose tracking system, and Section 4 describes the system in
details. Section 5 shows several pose tracking experiments
with real video images. Section 6 concludes the paper.

2. Previous Work
The first category of research in 3D head tracking in-

volves optical flow computation [5, 6, 12, 32]. This ap-
proach works well when the changes of illumination and
head motion are small. It is in general difficult to handle
facial deformations.

In the second category, the 3D head tracking problem
is formulated as the registration of an input video image
with the texture mapped 3D head model [21, 24, 13]. La
Cascia et al. [21] proposed a simple 3D cylindrical model
to warp texture from the input images, whereas Schodl et
al. [24] employed a full texture-mapped polygonal head
model to compensate for the registration errors. Dellaert et
al. [13] followed a Kalman-filter-based approach for track-
ing of planar patches, which uses texture mapping as the
measurement model in their framework. Our method im-
proves on this model-based approach by introducing two
novel techniques. First we use exemplar images to sam-
ple the facial appearance space thus avoiding matching be-
tween two images with very different illuminations which
are caused by head pose changes. Second we use an ex-
pression mask model to help separate point matches corre-
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sponding to rigid head motion from those corresponding to
facial deformations thus resulting in significantly more ro-
bust head pose estimation.

The techniques in the third category are based on track-
ing of some salient facial points, features, or patches in
images [3, 20, 25, 27]. In [3], 3D structure, camera fo-
cal length and head pose can be obtained in an extended
Kalman filter framework, which only utilizes tracked 2D
points as input. In [20], the head orientation is estimated
from tracking of five salient facial points: four eye corners
and nose top. This approach is in general very fast. The
drawback is that it is usually not very accurate nor very
stable because some of the features may not be completely
rigid during facial expressions and the number of these fea-
tures is small.

Bascle and Blake [4] and Blake et al.[7] described useful
techniques to separate head motion from facial expressions
for a given set of tracked points and contours such as feature
boundaries and expression wrinkles. Because most of these
contours are in the expression area, their motions contain
both pose changes and facial deformations. They separated
the two motions by parameterizing head pose in terms of
2D affine transformations with parallax. The drawback is
that they were not able to obtain 3D head rotations.

Attempt was made in [26] to determine the structure and
motion simultaneously in the bundle adjustment framework
while taking deformation into account. The techniques in-
troduced in our paper including the exemplar images and
facial expression masks can be potentially used in their sys-
tem as well to improve their robustness and convergence
rate.

3. Overview of Our Tracking System
In this paper, we propose a new model-based technique

for robust head pose tracking under changing expression
and/or occlusion. Here, the model information consists of a
3D face model, a set of exemplars sampling the face appear-
ance space, a facial expression mask model and a Bayesian
model. Our system starts with a simple initialization phase
to acquire the 3D face model and exemplars, followed by a
tracking phase.

During the initialization phase, we first capture a video
sequence of the user’s head under a neutral expression,
which is considered to be a rigid object. We build a person-
alized 3D face model from only one or two pictures of the
user at near frontal positions. No user interaction is needed
during this stage. Several reference images at distinct poses
are then automatically extracted by tracking the built mesh
model in the video sequence, and the head poses are esti-
mated in a similar way to that for texture blending of the
face model in [22]. Note that the reference images actually
sample the complex face appearance space which is diffi-
cult, if not impossible, to be represented by a single texture
image.

After the warming-up, our system is able to track the
head of the same person with occlusion or changing ex-
pression. We start tracking when the person is at a close-
to-frontal position. We match the current view against the
most appropriate reference image according to the predicted
pose, based on the motion smoothness assumption. Since
the matching is performed between the current view and
the predicted reference image, our head tracking is much
easier and more robust than if only a single texture image
is used. For matching between a rigid reference image and
the current image with facial deformation, we use a robust
motion segmentation algorithm and the disparity continuity
constraint to separate point matches corresponding to rigid
head motion from those corresponding to facial deforma-
tion. Because of this, each reference image can cover a rel-
atively large range (see experiments). Furthermore, we an-
alyze the facial deformation regions under different expres-
sions, and the rigid and non-rigid features grouping result
is evaluated by a MAP-based coarse expression estimation.
Since facial deformation tends to exist in some localized ar-
eas, the globally consistent rigid matches can be considered
to be from the dominant head motion. The head pose is then
estimated from the rigid motion points, and can be done re-
liable thanks to the 3D face mesh model, even when the
number of points is small (see below). Since we use refer-
ence images during tracking, the accumulative error inher-
ent in frame-by-frame tracking is avoided and more accu-
rate pose estimation is achieved. Finally, a failure alert and
tracking recovery mechanism is also implemented, to make
the whole tracking system even more robust and flexible.

4. Inside Our Head Pose Tracking System
We now describe in details the major steps of our head

pose tracking algorithm.

4.1. Acquiring Personalized Face Information
Our system starts with an initialization phase to acquire

personalized face information, which includes a personal-
ized 3D face model and a set of reference images sampling
the face appearance space.

The system first captures a video sequence of the person
to be tracked by having the person to turn his/her head from
one side to the other with a neutral expression in front of the
camera. A frontal face detector identifies one near frontal
view, and an Active Shape Model (ASM) algorithm [11]
is applied to that image to detect face feature points and
silhouettes.

4.1.1. Constructing personalized 3D Face Model
The person’s 3D face model is constructed from only the

frontal view by using a model-based approach. We use the
same face mesh model as the one used in the rapid model-
ing system developed by Liu et al [22]. It contains a generic
face mesh and a number of deformation vectors called met-
rics. Each metric provides a way to deform the mesh such
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(a) (b) (c)

(d) (e) (f)

Figure 1: Automatic Initializa-
tion Procedure: a) a general 3D
face mesh model; b) mesh model
with texture; c) a facial im-
age with ASM converge; d) be-
fore pose initialization; e) after
pose initialization; f) personal-
ized face model adjustment.

as to make the nose bigger, head wider, etc.
The problem of constructing the 3D face model is for-

mulated as searching for the head pose and the metric co-
efficients to best fit the face feature points and silhouettes
which are detected by ASM. As shown in Figure 1 (b) and
(c),there are three different sets of point correspondences
between the 3D face mesh model and the point distribution
model of ASM. Each red point in (c) corresponds to a vertex
on the face mesh in (b). These are point-to-point correspon-
dences. Each yellow point corresponds to a point on the
same facial curve in the face mesh. For example, the yellow
points on the lips correspond to points on the lip boundary
of the face mesh in (b). These are called point-to-curve cor-
respondences. The green image points are those on the sil-
houettes which do not have simple association with the face
mesh model but are useful in updating the face structure.

To obtain a reasonable initial guess of the head pose, we
first treat the generic face mesh as rigid and solve for the
pose to satisfy the point-to-point and point-to-curve corre-
spondences. Notice that these correspondences are 3D to
2D correspondences since we treat the face mesh as rigid.
Given a set of 3D to 2D correspondence, we can compute
the head pose using a technique to be described in Sec-
tion 4.3. The point-to-curve correspondences are converted
to point-to-point correspondences using an iterative closest
point approach. Figure 1 (d) and (e) shows the generic
mesh before and after pose initialization respectively.

We then fix the head pose, and search for the metric co-
efficients by using the silhouette information as well as the
other face features.

This pose estimation and structure update are alternated
until no significant progress is made. We find that it usually
terminates in 3 or 4 iterations.

Figure 1 (f) shows the final face mesh. We can see that
its silhouettes match the image silhouettes a lot better than

(e). The pose is also more accurate.

4.1.2. Reference Images
Once we get the 3D face model, we track the head in the

whole image sequence, and determine the head pose recur-
sively for each image as follows. Starting from the frontal
views used in pose and model adjustment, successive im-
ages (Ii; Ii+1) are matched. The head pose for Ii is known,
so we know the 3D points on the face corresponding to the
matched points in Ii. The head pose for Ii+1 is then de-
termined based on 3D-2D point correspondences. Experi-
ments have shown that this gives a much more accurate pose
estimation than if only 2D points are used.

As our matching technique to be described in the next
subsection can deal with relatively large motion, it is not
necessary to use all images in this video sequence as ref-
erence images. We develop an automatic image selection
algorithm during tracking. Let us call the amount of head
rotation between two consecutive frames the rotation speed.
If s is the current rotation speed and � is the desired angle
between each pair of selected images (reference images),
the next image is selected �=s frames away, assuming the
head motion is pretty smooth. In our implementation, the
initial guess of rotation speed is set to 1 degree/frame and
the desired separation angle is equal to 5 degrees. We must
point out that each reference image is a sparse sample in
both the head pose space and the face appearance space.
Figure 4 displays a few reference images selected during
one head tracking session.

During tracking, we predict reference images, instead of
traditional frame-by-frame prediction. Because each refer-
ence image can cover a relative large range thanks to our
matching technique, we can search for head pose efficiently
within a larger space. As will be evidenced by the exper-
iments, this representation by a set of sparse samples con-
tributes to both the flexibility and robustness for head pose
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Speak Fear Anger Sadness Disgust Joy Surprise

Figure 2: 3D facial mask model for rigid and non-rigid re-
gions under different expressions.

tracking. Furthermore, because we use reference images,
the accumulative error inherent in frame-by-frame tracking
is avoided and more accurate pose estimation is achieved.

We do not directly use the global textured image pro-
vided by the face modeling system for two reasons. The
first is that the face mesh model is very coarse, resulting
visible texture distortion. The second is that the global tex-
ture image is the blending of images under varying illumi-
nation condition (because the head is turning). Matching
with such a textured image is hard. We use the original im-
ages at several distinct poses as reference images, making
it more flexible and robust to handle expressional deforma-
tion, occlusion and illumination change.

4.2. Robust Matching and Clustering for Rigid-
Motion Points

We use corner points for head tracking and pose estima-
tion. We do not consider region appearance such as the tex-
ture map of the head model because appearance change is
very difficult to model when expressional deformation and
occlusion need to be dealt with.

The technique described in this section tries to find in a
robust way point correspondences due to rigid motion be-
tween a reference image and the image to track. The ref-
erence images we acquired during the initialization phase
contain the information of head pose and appearance under
neutral expression. The current image contains facial de-
formation and/or occlusion, but we can usually expect that
there exist some corner points encoding the rigid part of the
head motion if that image was taken near where the refer-
ence image was taken. From the dense facial motion anal-
ysis under different expressions [10, 31] shown in Figure 2,
we can find an important phenomenon that most facial ex-
pressional deformations due to speaking, smiling, frown-
ing, etc., are partial, radial and symmetric, except for sur-
prise. For occlusion, we can reasonably assume that occlu-
sion only occupies a small portion of the face, while the
remaining face parts undergo a rigid motion.

Given an image to track (called the target image) and a
predicted reference image, we first extract points of inter-
est with Harris corner detector [17], and then match them
with a normalized cross-correlation technique [34]. Let us

denote the set of obtained point matches by 
m. Notice
that there are two subsets of point matches: one subset cor-
responding to rigid motion, denoted by 
 g , and the other
subset corresponding to non-rigid motion, denoted by 
 n.
We are seeking to separate 
m into 
g and 
n. Obviously,
these two sets of points satisfy different types of constraints.

4.2.1 Rigid Motion Constraints
It is well known that point matches due to rigid motion

satisfy the same epipolar constraint [16, 35], which can be
described by the fundamental matrix F. For each pair of
pointsmr

i andmt
i, we define a measure of distance

EC(mr
i ;m

t
i) = d(mr

i ; l
r
i ) + d(mt

i; l
t
i) (1)

where lri = Fmt
i and lti = FT

m
r
i are epipolar lines, and

d(m; l) is the distance from point m to line l on the image.
If point match (mr

i ;m
t
i) 2 
g , then EC(mr

i ;m
t
i) = 0.

Since the epipolar constraint cannot detect false matches
along the epipolar line, we impose another constraint based
on the assumption that the disparity of matched points
should vary smoothly within a local region. Consider a
point match (mr

i ;m
t
i). Its disparity is defined as di =

m
r
i �m

t
i. In the neighborhoods around mr

i and mt
i, we

can find some other point matches, from which an average
disparity, �di, is computed. If di is very different from �di,
then this point match is likely to be invalid. So we define
the disparity continuity measure as the following

DC(mr
i ;m

t
i) = kdi � �dik (2)

4.2.2. Approximate Expression Interpretation of Non-
rigid Matches

The intuition behind the non-rigid matches constraint is
that they should be interpretable with a meaningful facial
expression. At the learning stage, we built several non-rigid
motion models on the 3D facial mesh model. The corre-
sponding motion regions (triangles) U i are labeled for sev-
eral expressions, as shown in Figure 2. Red regions are the
meshes under expression deformations, and green regions
are rigid for an emotion. Given their projection regions, 	 i,
on the reference view and the set of non-rigid features 
n,
the most likely interpretation of the facial expression is ob-
tained by

P = max
	i

Pr(	ij
n) (3)

Using Bayes’ Rule, this can be rewritten as

P = max
	i

�Pr(	i) Pr(
nj	i)

Pr(
n)

�
(4)

where Pr(
nj	i) is the probability of the non-rigid match-
ing set given the expression interpretation, Pr(	 i) is the
prior probability of the expression, and Pr(
n) is the prob-
ability of the grouping result. Pr(
n) does not depend on
	i, and can be considered as a constant.

Because the prior probability of the expression Pr(	 i)
is very difficult to obtain, we assign a uniform probability
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distribution1. The likelihood Pr(
nj	i) is obtained from a
simple observation model: the ratio between the number of
non-rigid matches inside 	i, N (
i

n), and the number of all
non-rigid matches, N (
n), i.e.,

Pr(
nj	i) =
N (
i

n)

N (
n)
(5)

4.2.3. Clustering Algorithm
Now, we describe our algorithm to cluster the matches

into rigid and non-rigid point matches.
Let us usew = fwig to record the correspondence status

for all matches in 
m. If the ith point match is a rigid one,
then wi = 1; otherwise, wi = 0. Basically w is what we
are trying to solve for.

For a set of rigid point matches, we define three mea-
sures. The first is the ratio of the number of rigid point
matches to the total number of matches, i.e.,

� =
N (
g)

N (
m)
(6)

The other two measure the rigidity quality:

EC(w) =
X

1�i�N (
m)

wiEC(m
r
i ;m

t
i); (7)

and

DC(w) =
X

1�i�N (
m)

wiDC(mr
i ;m

t
i): (8)

The objective of the clustering is to find the maximum
number of rigid matches with desired quality and in the
same time to be able to interpret the non-rigid matches with
certain facial expression. Therefore, we formulate cluster-
ing as the following optimization problem:

max
w

� max
	i

Pr(	ij
n) (9)

subject to EC(w) � �e (10)
DC(w) � �d (11)

where �e and �d are some pre-specified small constants.
This optimization problem is solved using a genetic al-

gorithm as outlined below.
Initialization: Randomly generate a population.
Step 1: For each candidate in the population, check

whether they satisfy (10) and (11). The ones that violate
either of the two constraints are discarded.

Step 2: For the remaining candidates, evaluate (9) as
their fitness levels. Perform evolutionary computation to
generate next generation population based on their fitness
levels. Then go to Step 1 and repeat until the maximum
number of generations is reached.

In our implementation, we run through 300 generations.
We choose the one with the maximum objective value in the
last generation as the final result.

1We are planning to learn the expressional prior information from audio
and video, and combine it with our tracking system in the future work.

4.3. Head Pose Estimation, Failure Alert and Auto-
recovery

We now have a set of rigid matches f(mr
i ;m

t
i)g, where

m
r
i and mt

i are points in the reference and target image,
respectively. For each point mr

i in the reference image, we
cast a 3D ray from the camera center through that point,
and compute the intersection xi of that ray with the face
mesh model corresponding to the reference pose. Then the

relative pose T̂ =

�
R̂ t̂
0T 1

�
can be computed according to

the following equation

APT̂~xi = � ~mt
i (12)

where ~xi = (xTi ; 1)
T , and ~mi = (mT

i ; 1)
T . The intrinsic

matrix A, the standard projection matrix P , x i and mt
i are

known. Each of the above equation gives two constraints on
T̂. We compute T̂ with a linear least-squares technique de-
scribed in [16]. In order to get a higher accuracy, we refine
the estimation by minimizing the sum of squared distances
between the observed image coordinatesm t

i and the repro-
jected values on the target image, i.e.,

min
T̂

X
i

km̂t
i �m

t
ik
2 (13)

where m̂ is given by � êmt

i = APT̂~xi. After T̂ is deter-
mined, the head pose for the target image in the camera
frame is given by

Tt = T̂Tr (14)

where Tr is the head pose for the reference image. Note that
since we use reference images during tracking, the accumu-
lative error inherent in frame-by-frame tracking is avoided
and more accurate pose estimation is achieved.

Failure alert and auto-recovery is critical for a robust
tracking system. Tracking failure mainly occurs in two sit-
uations: the expression deformation is too violent (such as
surprise), or the motion between facial views is too large.
The first problem is very difficult to deal with. This is
also true for other approaches such as the explicit 3D re-
construction technique [26]. Fortunately, this kind of spe-
cial expression is infrequent and can be detected with our
approximate expression interpretation. We can recover the
head pose as soon as that expression finishes. The second
problem is usually due to some agile head motion, leading
to a wrong prediction of the reference image. In this case,
we can easily solve it by relaxing the prediction to consider
multiple neighboring reference images. The best reference
image and the best pose estimate are selected according to
the following criteria:

1. The number of resulting rigid matching pairs is above
a certain value.

2. Their spatial distribution is not concentrated in a small
region.

3. The average distance between a rigidly matched point
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(a) reference view (b) a tracked image (c) a tracked image (d) a tracked image (e) a tracked image
Figure 3: The range of head orientation that can be tracked with a near frontal reference image.

(a) reference view 1 (b) reference view 3 (c) reference view 5 (d) reference view 7

(e) reference view 9 (f) reference view 11 (g) reference view 13 (h) reference view 15

Figure 4: A sample set of the reference images picked by computer for human head rolling.

(a) talking using ref. 5 (b) talking using ref. 11 (c) talking using ref. 14 (d) talking using ref. 15

(e) frowning using ref. 12 (f) smiling using ref. 4 (g) smiling using ref. 10 (h) smiling using ref. 13

Figure 5: Head pose tracking with changing facial expression.

and the projection of its corresponding 3D point on the
image is below a certain value.

4. The expression interpretation of non-rigid matching
points is reasonable.

If one of the following four criteria is not satisfied, the sys-
tem will issue a tracking failure alert.

Compared with multi-hypothesis tracking approaches
[7], the robustness of our method is ensured by the alert-
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Figure 6: Sample results on head pose tracking of two other people

Figure 7: The feature matches before and after motion seg-
mentation.

and-recovery scheme. Our method usually runs in a single
pose hypothesis mode. It becomes a multiple hypothesis
tracking only when the system issues a tracking failure alert
and runs in a recovery mode. Our method can be easily ex-
tended to consider multiple pose hypotheses, but the com-
putation cost will be increased by as many times.

5. Experiments
In this section, we first show the robustness of our pose

estimation algorithm for two views. For example, the ref-
erence image in Figure 3(a) can be used for pose tracking
for other images if the 3D orientation is within a range of
about (�10Æ; 10Æ) in all directions. In Figure 3, we show
the tracking results for four images. Although it may be
hard to see, the matched rigid points are indicated with yel-
low dots. The result is quite accurate for images shown in
Figure 3 (b) and (c). For images shown in Figure 3 (d) and
(e), since the orientations are quite different from the refer-
ence view, it is not surprising that only a few feature points
are retained as belonging to the rigid head motion. The re-

Figure 8: Tracking results under occlusion with certain il-
lumination variation.

sults are still reasonable.
An example of feature matches before and after GA seg-

mentation are shown in Figure 7. We can see that some
matches around the mouth are grouped as non-rigid fea-
tures. Experiments show that our approach works well with
disparity range up to 60 pixels.

Figure 4 shows the set of reference images selected dur-
ing a demonstration when a person was turning his head.
This type of out-of-plane rotation is usually difficult for
head tracking, but we can see that our algorithm can de-
termine accurately the head pose, thanks to the 3D mesh
model. These reference images are then used to track a head
with changing expression, and a result is shown in Figure 5,
where the corresponding reference image number used for
matching is indicated.

We have conducted many more experiments. Figure 6
shows some tracking results with two other people, while
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Figure 8 shows that our tracking system works successfully
even when occlusion and changing illumination occur.

6. Conclusions and Discussions
In this paper, we have proposed a new model- and

exemplar-based technique for robust head pose tracking
under changing expression and/or occlusion. Our system
starts with a simple learning stage. It builds a personalized
3D face mesh model from two near frontal views and auto-
matically acquires a few reference images at distinct poses
which actually sample the complex face appearance space.
During head tracking with deformation, we match the cur-
rent view against the most appropriate reference image ac-
cording to the predicted current pose. We also use a ro-
bust motion segmentation algorithm which separates point
matches corresponding to rigid head motion from those cor-
responding to facial deformation. The head pose can then
be reliably estimated from the rigid motion points thanks to
the 3D face mesh model, even when the number of points
is small. Since we use reference images during tracking,
the accumulative error inherent in frame-by-frame tracking
is avoided and more accurate pose estimation is achieved.
We have demonstrated the validity of our approach with
several video sequences acquired in a casual environment.
We can indeed deal with large head motion, changing facial
expression, talking, and limited occlusion and illumination
change.

In our current work, the reference images only sam-
ple the appearance space of a face under a single expres-
sion. We are planning to extend our work to include ex-
emplars with various expression, and formulate the head
tracking problem in a probabilistic paradigm similar to that
described in [29].
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