
1694 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 8, AUGUST 2015

Automatic Segmentation of Spinal Canals in CT
Images via Iterative Topology Refinement

Qian Wang, Le Lu, Dijia Wu, Noha El-Zehiry, Yefeng Zheng, Dinggang Shen*, and Kevin S. Zhou

Abstract—Accurate segmentation of the spinal canals in com-
puted tomography (CT) images is an important task in many
related studies. In this paper, we propose an automatic segmenta-
tion method and apply it to our highly challenging image cohort
that is acquired from multiple clinical sites and from the CT
channel of the PET-CT scans. To this end, we adapt the interactive
random-walk solvers to be a fully automatic cascaded pipeline.
The automatic segmentation pipeline is initialized with robust
voxelwise classification using Haar-like features and probabilistic
boosting tree. Then, the topology of the spinal canal is extracted
from the tentative segmentation and further refined for the sub-
sequent random-walk solver. In particular, the refined topology
leads to improved seeding voxels or boundary conditions, which
allow the subsequent random-walk solver to improve the segmen-
tation result. Therefore, by iteratively refining the spinal canal
topology and cascading the random-walk solvers, satisfactory
segmentation results can be acquired within only a few iterations,
even for cases with scoliosis, bone fractures and lesions. Our
experiments validate the capability of the proposed method with
promising segmentation performance, even though the resolution
and the contrast of our dataset with 110 patient cases (90 for
testing and 20 for training) are low and various bone pathologies
occur frequently.

Index Terms—Image landmark detection, image segmentation,
random walk, spinal canal, topology.

I. INTRODUCTION

M ANY research and clinical studies require the auto-
matic segmentation of the spines, which is capable

of facilitating disease diagnosis, treatment, and statistical
analysis/evaluation. For example, the segmentation of the
spine provides spatial reference to locate and identify other

Manuscript received April 07, 2015; revisedMay 14, 2015; acceptedMay 16,
2015. Date of publication May 25, 2015; date of current version July 29, 2015.
This work was supported in part by the National Natural Science Foundation
of China (NSFC) Grants (61401271, 61473190, 81471733), and the National
Institute of Health of United States (NIH) Grant (CA140413). Asterisk indicates
corresponding author.
Q. Wang is with Med-X Research Institute, School of Biomedical Engi-

neering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
wang.qian@sjtu.edu.cn).
L. Lu is with Radiology and Imaging Science, National Institutes of Health

(NIH) Clinical Center, Bethesda, MD 20892 USA (e-mail: le.lu@nih.gov).
D. Wu is with Google, Seattle, WA 98103 USA (e-mail: dijia@google.com).
N. El-Zehiry, Y. Zheng, and K. S. Zhou are with Siemens Corporate

Research, Princeton, NJ 08540 USA (e-mail: noha.el-zehiry@siemens.com;
yefeng.zheng@siemens.com; shaohua.zhou@siemens.com).
*D. Shen is with the Department of Radiology and BRIC, University of North

Carolina at Chapel Hill, Chapel Hill, NC 27510 USA (e-mail: dgshen@med.
unc.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMI.2015.2436693

neighbouring anatomical structures in abdomens and chests,
thus contributing to the understanding of the full-body scan
essentially [1]–[3]. In terms of image registration, the seg-
mented spines provide important features that are helpful to
the correct alignment of corresponding anatomical structures
across individual subjects [4], [5]. Furthermore, it becomes
easier to conduct disease-oriented analysis given the segmented
topologies/shapes of the spines [6]. In the meantime, based on
the segmentation of the spinal canal, the entire spinal cord can
easily be delineated, making it possible to count radiotherapy
dosages which are crucial to the normal functions of the nerve
tracts [7]. To this end, a lot of efforts have been devoted to
the segmentation of the spine and its related structures from
multi-modal imaging acquisitions.
Although relatively more work in the literature focus on the

segmentation of the spines in magnetic resonance (MR) images,
we will investigate the automatic segmentation of the spinal
canals from highly varying computed tomography (CT) images
in this paper. Accurately segmenting the spinal canal facili-
tates the computer-aided detection process of anomalies, such
as epidural masses on CT scans [8]. Another application is to en-
hance the bone lesion or tumor visualization by anatomy-aware
attenuation correction in PET-CT imaging [9], [10]. A literature
review of segmenting the spinal canals in CT images will be
provided in Section II. In general, most conventional methods
require user inputs to certain extent for the segmentation of the
spinal canal in CT data. It is not easy to apply these semi-auto-
matic methods to large-scale image cohorts, as human interac-
tion is often tedious and costs high. The inconsistency among
human experts also challenges the quality of the segmentation
results.
Alternative automatic solutions mostly follow the top-down

design, by recognizing related anatomical structures from the
large scales to small. In this way, the spine can finally be lo-
calized with the helps from other neighboring anatomies. How-
ever, the robustness of these top-down methods are challenged
if certain anatomical structure is missing in a specific image
due to limited superior-inferior coverage. In particular, our pa-
tient population has a large portion of unhealthy subjects where
various bone/spine pathologies can often be observed. The top-
down strategy may not generalize well to these diseased/out-
lier cases. This motivates us to exploit more flexible and robust
data-driven bottom-up method in this paper.
Meanwhile, it is worth noting that our task to segment the

spinal canal is extremely difficult concerning the data, which
will be handled in the method and experimental sections.
1) We acquire a total number of 110 CT scans of individual

patients from eight different clinical sites for this study.
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Fig. 1. The views of the spines of two individual patients. In (a) the shape of the
spine is relatively normal. However, in (b), the disease (i.e., scoliosis) affects the
appearance of the spine significantly by introducing a twist alongside the lateral
axis. The views are sagittal and coronal in Fig. 1(a) and (b), respectively. Both
exemplar images are isotropically resampled (to the voxel resolution of 2 2
2 ) and zoomed to the region of interest.

The cohort of the CT images is among the largest in the
literature.

2) The images in our collection vary significantly in terms
of the acquisition configurations, including superior-infe-
rior coverage, sizes, spatial resolutions, etc. This variation
strongly challenges the robustness of the automatic seg-
mentation methods.

3) All images are acquired from the CT channels of
the PET-CT scanners. Therefore, the quality (e.g.,
signal-noise-ratio, tissue contrast) of the images is rela-
tively lower compared to regular CT acquisitions. Also,
regular CT scans of the spines are often acquired with in-
travenous (IV) contrast. However, for our data, no contrast
is involved.

4) We recruit patients and aim to verify the proposed method
upon real clinical data setup. All patients are affected by
diseases (common to PET-CT imaging patient population),
which introduce uncontrollable impacts to the shapes/ap-
pearances of the spines. For example, typical slices of two
patients are provided in Fig. 1(a) and (b), respectively. It is
observable that, in Fig. 1(b), a disease (i.e., scoliosis) se-
verely affects and then twists the spine in the lateral (left-
right) axis direction, resulting in a significant abnormality.

Though facing the aforementioned technical challenges, we
have successfully developed a novel method to segment the
spine canals from the large-scale cohort of diverse CT images.
Our automatic segmentation method relies on the iterative re-
finement of the topology of the spine, which provides contex-
tual guidance to improve the segmentation of the spinal canal
gradually. In particular, we describe the topology of the spine
by its medial line, which can be extracted and refined from the
tentative segmentation of the spinal canal. Seeding voxels are
sampled according to the refined spine topology, and further
fed into the random-walk solver[11] to update the segmentation
of the spinal canal. By iteratively applying the above scheme,
we are able to cascade several random-walk solvers, and attain
highly robust and accurate segmentation of the spinal canal in
CT images.
In general, the major contributions of our work consist of the

following three aspects.
1) A fully automatic method is proposed for the segmenta-

tion of the spinal canal in CT image. The method is suc-
cessfully validated upon one of the largest and most chal-
lenging datasets ever reported in the literature.

2) We utilize the iterative random-walk solvers to flexibly fill
in the spatial occupancy of the spinal canal. The topology
of the spinal canal, which is extracted and refined from the
tentative segmentation, behaves as the regularized context
information for the refinement of the segmentation.

3) The topology of the spinal canal is initially determined
from the discriminative learning of the training images.
Then, subject-specific geometric/appearance constraints
are applied for the refinement of the topology of each
testing subject under consideration.

The rest of this paper is organized as follows. In Section II,
a literature review related to this work will be provided. Then,
we will detail the proposed method in Section III and apply it to
the large-scale cohort of diverse CT images in Section IV. This
paper will be concluded with extended discussions in Section V.

II. RELATED WORK

A. Segmentation of the Spine

As mentioned earlier, many previous work on the segmen-
tation of the spinal canal/cord in the literature are devoted to
the modality of MR images [12]–[14], partly due to the better
capability of MR imaging in rendering and differentiating soft
tissues. For example, Koh et al. [15] utilized the gradient vector
flow field [16] to segment the spinal cord for a computer-aided
diagnosis system. A semi-automatic method was proposed in
[17], such that the cord surface is acquired based on the man-
ually-specified cord center line and through the active surface
model with intrinsic smoothness constraints. Chen et al. [18]
combined deformed atlas and topology preserving classification
to address the segmentation of the spinal cord. Recently, Law et
al. [19], [20] applied the gradient competition anisotropy tech-
nique to segment the spinal cord as well as to extract its center
line.
Instead of the MR modality, tremendous efforts are also de-

voted to segmenting the spines in CT images, which is the focus
of this paper as well. Several related literature reports fall into
the category of semi-automatic segmentation [21]–[23], which
may not be easy to be applied upon large-scale image cohorts.
Alternatively, Archip et al. [7] presented an automatic segmen-
tation pipeline by parsing anatomical objects in a recursive and
top-down manner. Similarly, a top-down parcellation strategy
was also adopted by [24], which utilized watershed and graph
search to segment the spinal canal. In general, the top-down so-
lution relies on the identification of the spine column for rough
but necessary spatial reference, while the detection of all these
anatomical structures can be non-trivial nevertheless.

B. Seeding and Interactive Segmentation

Interactive segmentation methods have developed rapidly in
past decades and are widely applied in the area of medical image
analysis. A recent survey of interactive segmentation and its
applications in medical images can be found in [25]. Though
not fully automatic, these methods are able to effectively con-
quer the difficulties challenging many automatic segmentation
methods by requiring only minimal human interaction. The pro-
posed method in this paper is also inspired by the principle of
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interactive segmentation as the seeding voxels are iteratively ad-
justed for better segmentation. However, the fundamental differ-
ence of our method is that the interaction (i.e., the determination
of the re-placed seeding voxels) is fully automatic, instead of de-
pending on the inputs from human experts.
Many interactive segmentation methods (e.g., the graph-cut

methods [26], [27]) regard the seeding voxels as the boundary
condition, and solve for the segmentation in the energy-mini-
mization style. The random-walk solver [11], for example, asks
human experts to specify seeding voxels of different labels,
which correspond to “spinal-canal” and “not-spinal-canal” in
our case. Then, different labels are assigned to non-seeding
voxels by embedding the image into a graph and utilizing in-
tensity similarities between voxels. Human experts can further
edit the placement of seeds until the desired quality of the
segmentation is achieved. Although it is convenient to apply
the random-walk method for interactive segmentation of the
spinal canals, the interaction may cost high in terms of both
expert training and lengthy processing of each image dataset.

C. Discriminative Learning and Image Segmentation
Discriminative learning is able to capture the statistical de-

pendence of an unobserved variable (e.g., the label of the seg-
mentation) on an observed variable (e.g., the vector of features
extracted from the image) via the modeling of the posterior
probability. The technique has thus become a popular choice
for detecting anatomical objects (including landmarks points,
lines/curves, and organs) in medical images [28]. Many super-
vised learning methods are applicable to the segmentation task,
e.g., boosting [29] and random forest [30]. Multiple classifiers
can also be combined into more complex structures (e.g., tree
[31] and network [32]) for better performances. For example, in
our previous work [33], voxelwise Haar-like features [34] were
extracted and fed into a probabilistic-boosting-tree (PBT) clas-
sifier [31] to segment the ribs in CT images. Satisfactory results
are sometimes hard to achieve in one-shot learning-based seg-
mentation, especially concerning the complex appearance in-
formation in medical images. To this end, context information,
which is modeled as the posterior probability in discriminative
learning, can significantly improve the segmentation quality by
feeding itself to subsequent learned classifiers [35].

III. METHOD

We treat segmenting the spinal canal as a typical binary seg-
mentation problem. Let denote the probability of the voxel
being foreground (i.e., inside the spinal canal) and the

probability for being background (i.e., outside the spinal canal),
respectively. In general, we have after proper
normalization. The binary segmentation of the spinal canal can
then be acquired by applying a confidence threshold to the map
of within the entire image space. For example, if

, the voxel is naturally regarded as being part of the fore-
ground. On the contrary, if , then belongs to the
background. Note that the to-be-estimated is de-factor a
posterior probability, which is conditioned on the observation
(of the features) upon the voxel .
The probability map can be generated in different ways. For

example, by providing foreground and background seeding

voxels automatically, we can acquire the probability map
through the random-walk solver as in our method. The seeding
voxels are determined according to the iteratively refined
topology of the spinal canal. Specifically, to initiate the
random-walk-based segmentation, we start from the supervised
voxelwise classification to identify a small set of voxels, which
are assigned with very high classification confidences and
thus most likely to be foreground. The identified voxels act
as positive seeds and are fed into the random-walk solver to
generate a conservative binary segmentation with relatively low
sensitivity but also low false-positive (FP) error. Concerning
the fact that the spinal canals are generally tubular structures
even though their shapes vary significantly across the patient
population, both geometric and appearance constraints that are
anatomically meaningful are then enforced to extract and to
refine the topology of the segmented spinal canal. The refined
topology, which is continuous and smooth, thus leads to the up-
dated placement of the seeding voxels, which in turn increases
the sensitivity in segmenting the spinal canal via random walk.
By iteratively feeding the improved seeding voxels to the
cascaded random-walk solvers , we have successfully built an
automatic pipeline that yields satisfactory segmentation of the
spinal canal. Details of our method will be provided as follows.
For easy understanding, the flowchart of our method, as well as
explanations to its key steps, is shown in Fig. 2.
We categorize our method as being a bottom-up solution,

which is significantly different from the conventional top-down
methods. Specifically, we identify a set of seeding voxels
where the tentative segmentation is mostly reliable, instead
of detecting the anatomical objects of much larger sizes (e.g.,
organs near the spine). The seeding voxels are initially detected
through appearance-based discriminative learning [33] and
then updated according to the (tentative) spine topology. The
segmentation result, as well as the spine topology, can be im-
proved in subsequent iterations. In this way, the segmentation
of the spinal canal can accumulate or propagate from a few
(seeding) voxels, until reaching satisfactory result throughout
the entire image space.

A. Voxelwise Classification
In order to identify highly reliable foreground voxels as pos-

itive seeds for the random-walk solver, we turn to voxelwise
classification based on discriminative learning. The classifica-
tion consists of the training and the testing stages. In the training
stage, we utilize the PBT-based classifiers to establish the de-
pendence between the visual (appearance) features of voxels
and their segmentation labels. Each new subject is then passed
into the testing stage for determining the segmentation of its
spinal canal.
In particular, we have manually annotated the medial lines of

the spinal canals on the training set of 20 images. The training
images are randomly selected from our dataset, while each of
the eight clinical sites contributes at least one training image.
The medial line is defined to connect the medial points of the
spinal canal on all traverse slices. Voxels exactly along the me-
dial lines are used for the samples of the foreground, while back-
ground samples are obtained from a constant distance away to
the medial lines.
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Fig. 2. The flowchart of our method.

We further use 3D Haar-like features as voxel descriptors
[29], [34], [35]. The Haar-like features are computed from the
neighborhood of each sample voxel under consideration, thus
representing the local appearance of the voxel. In particular, we
employ 10 filter templates (cf. Fig. 3) to extract Haar-like fea-
tures. For each filter template, five scales (i.e., 4, 10, 16, 22, and
28 in voxels) and 11 translations (i.e., 0, , , , , and

in voxels) along each axis are used. The extraction is re-
stricted within the block of 31 31 31 voxels. In this way, we
can acquire up to 91,594 Haar-like features for each voxel in the
image. Note that our Haar-like features are not computed from
a complete Haar wavelet band.
The PBT classifiers are then trained with AdaBoost nodes

[31]. In the other word, each node of PBT corresponds to a
certain AdaBoost classifier. Instead of using only one PBT
classifier, we build a coarse-to-fine pyramid of PBT classifiers.
That is, coarse features are used for PBT-based training/testing
first, followed by features of fine scales. Totally three scales are
used. In this way, we can significantly speed up our method by
downsampling images in earlier stages of the classification and
thus reducing the number of training/testing samples. Mean-
while, we can better exploit coarse-scale features reflecting
longer range spatial context information in coarse resolution,
which is usually limited by conventional Haar filters. Note that
the same strategy has been successfully applied in our previous
studies, e.g., bone extraction [33].
The well-performing foreground voxel confidence map (as

well as themeasuring color bar) with respect to a certain training
subject is displayed in Fig. 4(a). However, when the classi-
fier is applied to a new testing subject, the classification re-
sult may suffer from both false-negative (FN) and FP errors.
Typical classification errors are highlighted by the red arrows
in Fig. 4(b)–(c). For instance, an FP artifact is highlighted in
Fig. 4(b), while Fig. 4(c) shows the discontinuity of the fore-
ground confidence which is caused by FN errors. Since the pur-
pose of voxelwise classification is to identify highly reliable

Fig. 3. There are 10 filter templates for extracting 3D Haar-like features. Each
Haar-like feature is calculated as the difference between the sum of intensities
inside the grey region and the the sum of intensities inside the white region.

Fig. 4. Panel (a) shows the confidence map yielded by voxelwise classification
on a training subject; panels (b)-(d) are for the voxelwise confidences of another
testing subject. Among them, FP errors and FN errors are highlighted in (b)
and (c), respectively. We use a high confidence threshold to preserve reliable
foreground voxels only as in (d).

foreground voxels only (i.e., those highlighted in Fig. 4(d)), we
have applied a high confidence threshold (i.e., ) em-
pirically to suppress most FP errors. The binary segmentation,
which will be iteratively refined by the subsequent cascaded
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random-walk solvers, is thus tentatively generated after thresh-
olding the confidence map yielded by voxelwise classification.

B. The Random-Walk Solver

Similar to the PBT-based voxelwise classification, the
random-walk solver also produces voxelwise probability of
being foreground/background [11]. After users have specified
foreground/background seeds, the random-walk solver departs
from a certain non-seeding voxel and calculates its probabili-
ties to reach foreground and background seeds, as and ,
respectively. Usually the non-seeding voxel is assigned to
foreground if . In terms of random walk, the image is
embedded into a graph where vertices correspond to individual
voxels and edges link neighboring voxels. The weight
of the edge , which measures the similarity between two
neighboring voxels and , is defined as

(1)

where and represent intensities at two locations; is a
positive constant. Assuming that the segmentation boundaries
are well aligned with intensity changes, the random-walk solver
then aims to estimate that minimizes the following energy
function

(2)

To optimize the above is equivalent to solving a Dirichlet
problem with boundary conditions that are defined by the
seeding voxels. Specifically, is set to 1 if is a foreground
seed, and 0 for background. The calculated incorporates
spatial information across neighboring voxels, which differs
from the independent voxelwise classification.
The probability of each voxel in random walk is associated

with the paths from the voxel to seeds. Hence, is dependent
not only on the weights of the edges forming the path but also
the length of each path. This property potentially undermines
the random-walk solver, which could be sensitive to the place-
ment of the seeding voxels. In the toy example of Fig. 5(a), there
are three vertical stripes. The intensity of the middle stripe is
slightly higher than two side stripe, in order to approximates the
spinal canal surrounded by other tissues in CT data. We high-
light certain sections of stripe boundaries in very high intensity
to simulate the existence of vertebra, whose presence can also
be discontinuous. Foreground seeds and background seeds are
colored in red and green, respectively. The probability cal-
culated by the random-walk solver and the binary segmentation
( ) are shown in Fig. 5(b) and (c), respectively. We ob-
serve from Fig. 5(c) that the segmented foreground falls into
two disconnected segments undesirably.
Though increasing the threshold on and tuning tomodify

the edge weights might improve the segmentation results, it
would make the method too ad-hoc to be practically usable
for large-scale image cohorts. On the other hand, the random-
walk solver provides an interactive remedy by simply allowing
human experts to place more seeds in proximity to the desired

Fig. 5. With foreground seeds (in red) and background seeds (in green) (a), the
calculated probabilities (b) and the corresponding binary segmentation (c) are
not satisfactory. However, by manually placing more seeds (d), the segmenta-
tion results (e-f) are improved significantly.

Fig. 6. Four sub-steps in refining the topology of the spinal canal include
(a) estimating medial points; (b) determining medial segments; (c) calculating
virtual medial segments (in dotted curves); and (d) placing more virtual medial
points (in purple).

segmentation boundaries. By adding a few more seeds as in
Fig. 5(d), the results clearly show better discrepancy of fore-
ground/background and are thus much better (Fig. 5(e)–(f)).
In our method, we automatically update the placement of the
seeding voxels according to the topology of the spinal canal, in
order to attain satisfactory segmentation in the final.

C. Spine Topology and Cascaded Random-Walk Solvers

As mentioned above, we are able to identify the initial
seeding voxels through the voxelwise classification step. If we
feed these seeding voxels to the random-walk solver in one-shot
style directly, the generated binary segmentation usually breaks
into several disconnected segments. The reason is similar to
the case in Fig. 5(a)–(c). The initial seeding voxels are required
to be highly reliable, such that they are not sufficient to cover
the region of the entire spinal canal. To this end, we extract
the topology of the tentatively segmented spinal canal. Then,
the topology is refined for better placement of the seeding
voxels, which is further utilized by the following random-walk
solver. The procedure above is iteratively invoked, such that
several random-walk solvers can be cascaded for the final
segmentation.
1) Topology Extraction and Refinement: To acquire the

complete segmentation of the spinal canal, we introduce the
topology constraints. Specifically, we use the medial line of
the spinal canal to represent its topology. After calculating all
segments of the medial line given the tentative segmentation,
we can interleave them into a single connected curve. Fig. 6 il-
lustrates the four sub-steps to extract and to refine the topology
of the spinal canal.
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1) We first calculate the medial point of the foreground voxels
on each transverse slice as in Fig. 6(a), based on the ten-
tative segmentation result. The medial point is defined to
have the least sum of distances to all other foreground
voxels on each slice. In this way, most medial points are al-
located within the spinal canal, though some of themmight
be affected by segmentation artifacts and are determined to
be outside the spinal canal incorrectly.

2) Assuming that the medial line connects all medial points,
we then connect the detected medial points into several
segments in Fig. 6(b). The medial line may break into sev-
eral segments since the medial points can be missing on
certain traverse slices. Also, a curvature threshold (i.e., 30
over 4 mm physical spacing) is imposed along the con-
nected medial line, such that those medial points incurring
too sharp turns to the medial line would be rejected as out-
liers. The reason is that the topology of the spinal canal,
which is described by the medial line, has to be smooth
from the physiologic perspective.

3) With all segments computed in the above, we can inter-
leave them by filling gaps with smooth virtual segments
as represented by dotted curves in Fig. 6(c). Each virtual
segment minimizes to keep the me-
dial line smooth. Here, indicates the normalized
arc-length. Note that the stationary solution to the above
holds when , while the Cauchy boundary con-
ditions are defined by both two ends of the virtual segment,
as well as tangent directions at the ends. Though the nu-
merical solution is non-unique, we apply the cubic Bézier
curve for the fast estimation of the virtual segment. In par-
ticular, for a certain virtual segment, we denote its two ends
as and . An additional control point is placed so
that the direction from to is identical to the tangent
direction at . Similarly, we can define according to

and the associated tangent direction. We further require
that the four control points are equally spaced. The virtual
segment is then generated following

(3)

4) After predicting the virtual segment in Fig. 6(c), we
finally can place more virtual medial points along the
virtual segment. In addition to the subject-specific ge-
ometry constraints to keep the virtual segments smooth
(cf. Fig. 6(a)–(c)), appearance model is introduced in
Fig. 6(d) for the determination of qualified virtual medial
points. To this end, we calculate the intensity mean and
the standard deviation (STD) upon all existing medial
points (red dots). The univariate Gaussian intensity model
allows us to simply examine whether a new voxel is
highly possible to be foreground given its intensity value.
In particular, we start from both two ends of each virtual
segment, and admit virtual medial point (purple dot) if its
intensity is within the single STD range of the intensity
model. The process to admit virtual medial points con-
tinues until reaching a disqualified candidate.

2) Placement of Seeding Voxels: After the topology of the
spinal canal has been extracted and refined, we are able to pro-

vide better seeds for the random-walk solver to use. All voxels
along the refined medial line, including the newly admitted vir-
tual segments, act as foreground seeds. Moreover, we qualify
more voxels as foreground seeds if (1) they have been classified
as foreground in previous segmentation; (2) their intensities are
within the single STD range of the appearancemodel introduced
above; and (3) they are connected to the medial line through a
path passing foreground seeds only. In this way, we have inher-
ited previous segmentation in the areas where the confidence is
high, and saved computation since the random-walk solver can
simply treat them as boundary conditions. Surrounding voxels
with intensities higher than an empirical threshold are mostly
located in the bone areas and regarded as the background seeds.
3) Cascaded Random-Walk Solvers: By repeating the refine-

ment of the spine topology and the placement of the seeding
voxels, we can cascade several random-walk solvers for the sake
of the final segmentation result. Each random-walk solver in the
automatic pipeline is able to improve the tentative segmentation,
based on the spine topology refined from the previous segmen-
tation. The iterative procedure terminates when the topology of
the spinal canal, or the length of the medial line, becomes stable.
In particular, we allow the medial line to grow at its both ends.
The growth of the segmentation can stop automatically at the in-
ferior (tail) end, since the medial line cannot penetrate the bones
due to the appearance constraint (cf. Fig. 6(d)). At the superior
(head) end, a maximal diameter of the segmented spinal canal
is defined to stop the segmentation entering the skull. Also, it
is worth noting that isolated medial segments may exist in the
segmentation result, while these segments are removed from
the final segmentation in our post-processing. These undesired
segments are usually caused by the segmentation artifacts that
are associated with leg marrows, as the legs are incorporated
within the superior-inferior coverage of certain images in our
dataset. An example will be discussed in the experiment section
(cf. Fig. 11).

IV. EXPERIMENTAL RESULTS
We validate the proposed method using the large-scale and

challenging dataset, which consists of 110 images (20 for
training and 90 for testing). In general, all 110 images are col-
lected with low voltage/dose protocols using Siemens Biograph
PET-CT scanners.
• The intra-slice resolution ranges 1.2–2.0 mm. In terms of
inter-slice thickness, there are 61 images of 3.0 mm and 42
images of 5.0 mm. The inter-slice thickness of the rest im-
ages is not greater than 1.0 mm (i.e., 0.6 mm, 0.75 mm, and
1.0 mm in particular). Note that all images are resampled
to the isotropic spacing of 2.0 mm in our pre-processing.

• The current is 25–50 mAs. For the cases of low inter-slice
thickness (i.e., ), the voltage is 120 kVp. For all
other images, the voltage is 80–100 kVp.

• We have 10 cases of thoracic, 74 cases of full (including
C1-L5 and partial sacrum), and 26 cases of partial full
(starting from C1-C8 and ending at L1-L5).

• We visually observe pathologies for 52 out of 110 im-
ages. Specifically, there are nine patients with bone le-
sions (19 sclarotic and five lytic lesions in total), 29 pa-
tients of osteoarthritis (59 vertebrae in the early-moderate
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Fig. 7. Panels (a)-(c) show the foreground probability maps on six consecutive
slices of a certain subject yielded after the first, second, and the final (fourth) it-
eration of randomwalk, respectively. The binary segmentation in (d) is acquired
by thresholding the final probability map in (c).

stage and 60 vertebrae in the advanced stage), seven pa-
tients with compression fractures (21 vertebrae in total),
19 patients with scoliosis (two severe cases of whole spine,
and 17 moderate cases of local sections), and 16 cases with
stenosis (affecting 54 vertebrae in total). Among them, we
identify 29 (out of 52) cases with multiple pathologies.

• All subjects are late teens to adults. The age is
in average, ranging from 19 to 76 years.

• There is no inclusion or exclusion protocol for patients
with special conditions. In particular, there are two patients
with metallic devices (i.e., four and six screws on the lower
spine sections, respectively).

For voxelwise classification, we use the same setting with
[33] in both training and testing. The implementation of the
random-walk solver is contributed by [11], while default set-
tings are applied (e.g., ). Parameters and configurations
are fixed across all testing subject images, for better feasibility
to apply our method toward real clinical data.

A. Demonstration of the Iterative Solution
We first use an example to demonstrate the necessity of the

proposed iterative solution. In Fig. 7(a), we show the fore-
ground probability on six consecutive slices of a subject after
the first iteration of random walk. Obviously the segmentation
breaks into several disconnected segments, due to the limited
number of seeding voxels provided by voxelwise classification.
After the second iteration, however, the tentative probability
map becomes much better as in Fig. 7(b). The reason is that
the topology of the spinal canal, which is represented by its
medial line, has been extracted and much refined. Then, better
placement of the seeding voxels leads to improved segmen-
tation via the random-walk solver. The final probability map
after the fourth iteration is shown in Fig. 7(c), with the binary
segmentation in Fig. 7(d). The results above demonstrate that
our method can efficiently utilize the topology of the spinal
canal and generate satisfactory segmentation.

B. Large-Scale Validation
Our work is among the largest-scale validations of the seg-

mentation of the spinal canals, as totally 90 images are utilized
for testing. Also, the images in our collection are highly diverse

Fig. 8. Typical segmentation results of the subject images acquired from eight
different clinical sites. Note that all images are isotropically resampled and
zoomed to the areas of the segmented spinal canals.

in terms of their superior-inferior coverage, sizes, original spa-
tial resolutions, etc. All images are acquired from the PET-CT
scanners, implying that their quality is relatively lower com-
pared to regular CT scans. Though facing all these difficulties,
our method has successfully segmented the spinal canals on all
testing cases. The results are affirmed by visually inspecting the
segmentation results.
In Fig. 8, we show the typical slices (in coronal views) of

the segmentation results on 20 testing patients. Note that the se-
lected images cover all eight different clinical sites involved in
this study. Although pathologies are prevalent across the entire
image cohort, the appearances of the spinal canals for the se-
lected patients are relatively normal in this figure. We observe
that the segmented spinal canals colored in red are clearly rea-
sonable. To facilitate readers' understanding, all images shown
in the figure are isotropically resampled although their sizes and
spatial resolutions may vary a lot. Moreover, we zoom in the
areas of the segmented spinal canals in the figure, while other
parts within the image are discarded.
Quantitative evaluation is important to judge the merits of the

proposed method. To this end, we select 20 testing images and
partly annotate their spinal canals under the traverse views. No
noticeable pathologies are observed for these selected testing
images. The annotation is conducted on the slices where the
spinal canal is fully encircled by the neighboring bone struc-
tures. We then measure the Dice overlap ratio between the seg-
mentation estimated by our method and the manual annotation.
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Fig. 9. The segmentation result in three consecutive coronal views (a) and 18
traverse views (b) of a difficult case. The patient is affected by the disease of
scoliosis, which twists the spine in the lateral axis (left-right) orientation signif-
icantly. Note that the Cobb angle [37] for this patient reaches 72 .

Suppose the manually annotated region of the spinal canal is
and the estimated segmentation by our method is , the Dice
overlap ratio is then computed as .
The operator calculates the volume of the respective region.
The Dice overlap ratio regarding our method is .
The results indicate that the segmentation of the spinal canal by
the proposed method is highly accurate and reliable.
Our method converges to the final segmentation within 2–5 it-

erations automatically for all testing subjects. Typically, it costs
20–60 seconds to segmented each subject depending on the size
of the image. The time cost was measured on a DELL worksta-
tion with Intel 2.27 GHz Xeon platform and 2.75 GB RAM. We
note that, with more sophisticated random-walk solver that is
specifically designed for fast editing of the seeding voxels [36],
the speed performance of the proposed method can be further
improved.

C. Case Analysis

An extreme case is shown in Fig. 9. The patient is affected by
the disease of scoliosis. Thus, an unusual twist along the lateral
axis (left-right) direction is introduced to the spine. In Fig. 9(a),
three consecutive coronal views of the patient is provided. We
further extract 18 consecutive traverse slices near the patholog-
ical location as in Fig. 9(b). Although the topology of the spinal
canal under consideration is abnormal, our method is still ca-
pable of well segmenting the whole structure. Visual inspections
can confirm the success of the proposed method.

Fig. 10. The segmentation result on a patient with metal screws. The screws
are clearly visible on the bottom of the figure.

Fig. 11. Besides the spinal canal (a) in a full-body scan, false segmentation
may occur especially in the areas of legs (b and c). The false segmentations can
be pruned in post-processing.

Next, we show a case where metal screws are visible. From
Fig. 10, we conclude that the segmentation result is still satis-
factory. It is worth noting that, for most existing studies, images
with metallic inplants (i.e., screws) are usually excluded. In our
work, however, all images are collected from clinical routines
without any special inclusion/exclusion protocol. Our method
has demonstrated its capability on these difficult cases.
We use the third case to discuss a common pattern of false

segmentation, which can be handled by the proposed method. In
Fig. 11, we show three sagittal slices from a full-body scan. The
segmented spinal canal is clearly visible in Fig. 11(a). However,
as shown in Fig. 11(b) and (c), two isolated areas of false seg-
mentation would occur if we directly thresholded the probability



1702 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 8, AUGUST 2015

TABLE I
COMPARISONS BETWEEN OUR METHOD AND STATE-OF-THE-ART METHODS

map yielded by the random-walk solver. The false segmentation
pattern usually occur in legs, which are incorporated into the
superior-inferior coverage of certain images in our dataset. To
this end, these false segmentation needs be pruned in post-pro-
cessing. That is, only a single connected segmentation area of
the largest volume is preserved, while other isolated segmenta-
tion areas are regarded as false segmentation.

D. Comparisons
We compare the proposed method with four alternative liter-

ature reports, in order to further demonstrate the capability of
our method. In general, the methods in Burnett et al. [21] and
Nyúl et al. [23] belong to the semi-automatic category, which
requires user input for the segmentation of the spinal canal. The
other two methods, i.e., Archip et al. [7] and Yao et al. [24], are
fully automatic. Note that all four methods under comparisons
are not specially designed to address or to validate upon im-
ages affected by severe pathologies, while the proposed method
has successfully been applied to all of our real clinical data. The
comparisons between our method and all four methods are sum-
marized one-by-one as follows.
1) Burnett et al. [21]: The testing was conducted upon only

six patients, the number of which was much lower than the vali-
dation of our method (i.e, 90 testing images). The segmentation
results were then reviewed by two oncologists. In overall, the
segmentation of the spinal canal was successful on 91% upon
all 557 slices (of six images) related to the spines. The segmen-
tation was unsuccessful on 2% slices, while the other 7% re-
sults required further manual editing. Note that, with respect to
our dataset, the proposed method has generated satisfactory seg-
mentation results on all slices.
2) Nyúl et al. [23]: The method required minimal inputs

from human experts for the localization of the spinal canal and
the staring position of the segmentation task. Then, segmenta-
tion errors were quantitatively measured against the gold stan-
dard (i.e., manual segmentation) on 27 images. According to the
reported data, we compute the mean Dice overlap ratio which
is equal to 93.66%. Note that the score of the proposed method
upon our dataset is . The two scores are within
the range of a single standard deviation. To this end, we argue
that our method is comparable to Nyúl et al. in terms of the seg-
mentation accuracy, though the latter is not fully automatic.
3) Archip et al. [7]: There were 23 images for testing the

accuracy. The segmented contours of the spinal canals on all
slices were examined. Averagely, the correct segmentation rate
is 85.3%. In particular, the segmentation results were fully cor-
rect on only one (out of 23) image, while errors were observed
for all other images. Also, it was admitted that the segmenta-
tion of the spinal canal was difficult, as the segmentation accu-
racy was lower than the segmentation of neighboring anatom-

ical structures (e.g., lamina). Again, we want to emphasize that
the segmentation results are acceptable for all images and all
slices in our experiment.
4) Yao et al. [24]: There were 71 testing images in Yao

et al., thus ranking the scale of its validation next to ours. The
segmentation results were reported to be successful on 69 (out of
71) images, while the failures were attributed to small vertebrae
and large curvature in the spine. Note that, however, our method
has been successfully applied to all testing images, while our
data collection is highly challenging as well.
It is worth noting that the above comparisons are based

on reported results in the literature, rather than being strictly
upon the same dataset and experimental setting. Therefore, it
is hard to derive a rigorous conclusion to assert the superiority
of individual methods. However, we believe that our method
yields satisfactory segmentation results especially concerning
our highly challenging dataset. In particular, we note that
all four methods under comparisons could fail occasionally,
indicating that their robustness can be severely challenged in
certain situations. In our experiment, however, the proposed
method is successfully applied upon all testing images under
consideration. For easy understanding, we have also summa-
rized the comparisons as in Table I.

V. CONCLUSION AND DISCUSSION

In this work, an automatic method to segment the spinal
canals from highly varying CT images is proposed. With initial
seeding voxels that are provided by PBT-based voxelwise
classification, we introduce the topology constraints into the
segmentation via random walk. Our iterative optimization has
successfully enhanced the capability of a single random-walk
solver in dealing with tubular spinal canals, in that the boundary
conditions (i.e., the placement of the seeding voxels) can be
iteratively improved to provide better segmentation results.
Our large-scale evaluation shows that the proposed method is
highly accurate and robust even if the datasets are very diverse
and challenging.
Due to limited accesses to state-of-the-art methods, rigor-

ously fair comparisons can hardly be conducted. Though we
compared our method with four other methods reported in
the literature, it is worth noting that the comparisons were
based on different datasets that were used by individual papers.
State-of-the-art methods typically reported failures when seg-
menting certain outlier images. However, it is worth noting that
our method has been successfully validated on all 90 testing
images. That is, no failure case has been generated through the
proposed method. Concerning the challenges caused by our
large-scale cohort of diverse images, we argue that our method
is very robust and accurate for the segmentation of the spinal
canal.
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Although our method has demonstrated its robust and accu-
rate segmentation capability upon the large-scale dataset, we are
aware that the proposed method could be challenged in certain
situations.
• Our images are collected from Siemens Biograph PET-CT
scanners with no IV contrast. Although no inclusion/exclu-
sion protocol has been used for the collection of the images,
the variation within the dataset (i.e., patient age, pathology,
scanning protocol) could still be limited. The performance
of the proposed method upon other large-scale datasets is
not investigated yet.

• We have assumed relatively homogeneous appearances for
foreground voxels, such that individual segments of the
extracted medial line can be refined into a single one. In
clinical practice, however, there are certain diseases (e.g.,
calcified vertebral foramen) which may introduce inhomo-
geneous appearances into CT images of the spine. In this
case, our method could possibly fail.

• Our images are acquired from adult patients only. For pae-
diatric patients whose spine sizes may vary from adults,
our method has not been validated yet.

• Our method could possibly well handle spine appearance
anomalies (including lumbarisation, sacralisation, disc de-
generation, bone spurs, surgical spinal-fusion, etc.). We
only have very simple assumption regarding the appear-
ance of the bones, i.e., with relatively high intensities for
bone voxels especially on the boundaries. However, the
exact effect of spine appearance anomalies cannot be in-
vestigated at this moment, as no such images are available
in our dataset.

In general, we conclude that the proposed method can well
handle our large-scale dataset, which is collected from clinical
routines of multiple sites.
There are two directions in our future work. First , we will

improve the speed performance of our method. In our current
implementation particularly, the computation of each random-
walk solver in the cascaded pipeline is independent. In fact, only
boundary conditions of two consecutive random-walk solvers
change during the segmentation process. Therefore, we would
be able to reduce the redundancy in computation, e.g., by using
the method reported in [36]. Second, we will apply our method
to more related segmentation problems. In particular, we will
probe the possibility of segmenting spinal canals/cords from
magnetic resonance (MR) images via the proposed method.
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