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Q1: Do deep learning and deep neural networks help in medical imaging or
medical image analysis problems? (Yes)
v Deep CAD: Lymph node application package (52.9% = 85%, 83%) and many CAD Applications

v Deep Segmentation = Precision Medicine in Radiology & Oncology: Pancreas segmentation application package (~53%
- 81.14% in Dice Coefficient) and beyond (prostate segmentation, pathological lung segmentation )

v Deep Lung (Interstitial Lung Disease) Application Package + DL Reading Chest X-ray; Pathological Lung Segmentation,

v Unsupervised category discovery usinglooped deep pseudo-task optimization (mapping large-scale radiology
database with category meta-labels) = Learning from PACS! (CVPR 2015, JMRL 2016, RSNA 2016, WACV 2017)

v A large-scale Chest X-ray database (with NLP based annotation): Dataset and Benchmark (CVPR 2017; CVPR 2018:
TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays,
MICCAI 2018)

v" Deep Lesion Graph (oncology cancer imaging) in the wild: Relationship Learning and Organization of Significant
Radiology Image Findings in a Diverse Large-scale Lesion Database (CVPR 2018, MICCAI 2018s, RSNA 2018)

* Updates & Publications can be downloaded: www.cs.jhu.edu/~lelu; https://clinicalcenter.nih.gov/drd/staff/le_lu.html;

MICCAI 2018 Young Researcher Publication Impact Award (5 year “test of time” award)!
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Perspectives

Why the previous or current com;))uter-aided diagnosis (CADe; CADx) systems
are not particularly successful yet”

- Integrating machine decisions is not easy for human doctors: Good
doctors hate to use; bad doctors are confused and do not know how to use?

- Human-Machine collaborative decision making process

* “Making machine decision more intecrjpretable, collaborative, explainable” is very critical for the
collaborative system --> learning mid-level attributes or embedding?

* Preventive medicine: what human doctors cannot do (in_very large scales:
millions of general population, at least not economical): = first-reader
population risk profiling ---?

* Precision Medicine: a) new quantitative (segmentation) imaging
biomarkers in precision medicine to better assist human doctors to make
more precise decisions; b) patient-level similarity retrieval system for
personalized diagnosis/therapy treatment: show by examples!
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Complexity & Composabllity



The Partnership of the
Future

Microsoft’s CEO explores how humans and
A.l. can work together to solve society’s o o o
greatest challenges.

919 788 23

By Satya Nadella

http://www.slate.com/articles
/technology/future_tense/20
16/06/microsoft_ceo_satya_n
adella_humans_and_ai_can_
work_together_to_solve_soci
ety.html

From left, visually impaired Microsoft developer Saqib Shaikh stands next to CEO Satya




Three Key Problems (1)

Computer-aided Detection (CADe) and Diagnosis (CADXx)

* Lymph node, colon polyp, bone lesion detection using Deep CNN + Random View Aggregation (TMI
2016; MICCAI 2014); MICCAI Young Researcher Publication Impact Award finalist 2017!

* Empirical analysis on Lymph node detection and interstitial lung disease (ILD) classification using
CNN (TMI 2016b); prostate CAD (ISBI 2017; MICCA 2018), Vascular Calcification plaque (ISBI 2017),
COLITIS (ISBI 2016), -

* Non-deep models for CADe using compositional representation (MICCAI 2014b) and +mid-level cues
(MICCAI 2015b); deep regression based multi-label ILD prediction (/17 submission); missing label issue
in ILD (ISBI 2016); ISBI 2017 -

» Clinical Impacts: producing various high performance “second or first
reader” CAD use cases and applications = effective imaging based
prescreening (triage) tools on a cloud based platform for large population
preventive profiling
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Automated Lymph Node Detection

* Difficult due to large variations in appearance, location and pose.
* Plus low contrast against surrounding tissues.




Make Shallow to Go Deeper via Mid-level Cues?
[Seff et al., MICCAI 2015]

* We explore a learned transformation scheme for producing
enhanced semantic input for HOG, based on LN-selective visual
responses.

* Mid-level semantic boundary cues learned from segmentation.

* All LNs in both target regions are manually segmented by
radiologists.

NDSEG Fellow,
CS PhD student,
3nd year, Princeton

Target region # Patients # LNs
Mediastinal 90 389

Abdominal 86 595




Deep models: Random Sets of Convolutional Neural Network

Predictions via Compositional Representation
[Roth et al. MICCAI 2014, Shin et al. TMI 2016; Roth et al. TMI 2016]

Application to appearance modeling and
detecting lymph node
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Generalizable? Colon CADe Results using a deeper CNN on 1186 patients
(or 2372 CTC volumes) via fine-tuning AlexNet [Roth et al., TMI 2016]
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detection in a screening population, Gastroenterology, vol. 129, no. 6, pp.1832-1844, 2005



2nd year PhD
student, NSF
Fellow, Harvard

[Nogues et al., MICCAI 2016]
MICCAI 2016 Travel Award



Figure 1. Examples of calcified plaques (red arrows) on
abdominal (left) and pelvic (right) CT scans.

Atherosclerotic Vascular Calcification Detection and Segmentation on Low Dose Computed
Tomography Scans -, Liu et al., IEEE ISBI 2017
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*Detecting the undetectables?

*Fitting in practical/real clinical
settings in the wild??

COLITIS DETECTION ON COMPUTED TOMOGRAPHY USING REGIONAL CONVOLUTIONAL
NEURAL NETWORKS, Liu et al., IEEE ISBI 2016

10/28/2018



Three Key Problems (lI)

Semantic Segmentation in Medical Image Analysis

* “DeepOrgan” for pancreas segmentation (MICCAI 2015) via scanning superpixels using multi-
scale deep features (“Zoom-out”) and probability map embedding.

* Deep segmentation on pancreas and lymph node clusters with Holistically-nested neural
networks as building blocks to learn unary (segmentation mask) and pairwise (labeling
segmentation boundary) CRF terms + spatial aggregation or + structured optimization, ISBI
2016, MICCAI 2016.

* The focus of recent MICCAI 2016-2018 papers since this is a much needed task = Small
datasets; (de-)compositional representation is still the key. Scale up to thousands, thousands
of patients if not more than that; weakly supervised segmentation = Effective and Efficient

Precision Biomarkers, even predicting the Prognosis Tumor Growth (DL tumor growth model
prediction MICCAI 2017, TMI 2018, MICCAI 2018)

»Clinical Impacts: semantic segmentation can help compute clinically
more accurate and desirable precision imaging bio-markers or

measurements =2 precision imaging personalized treatment and therapy
—> Less Guess More Doing (beyond RECIST 1.1)

10/28/2018



Semantic Segmentation on PET-CT
Patient Imaging (pathological ‘)

SR L T A

*robust, precision/accuracy,

10/28/2018

Towards whole Body precision
measurements or computable
precision imaging biomarkers

9

“Robust Whole Body 3D Bone
Masking via Bottom-up
Appearance Modeling and
Context Reasoning in Low-Dose
CT Imaging”, Lu et al., IEEE
WACV 2016

9

Bone Mineral Density (BMD)
scores, Muscle/Fat volumetric
measurements in whole body or
arbitrary FOV imaging - lung
nodules, bone lesions, head-
and-neck radiation sensitive
organs, segmenting flexible soft
anatomical structures for
precision medicine, all clinically
needed!



NSERC Fellow

MICCAI 2017 YSA runner-up
(d)

Fig.2: Example masks of HNN and P-HNN, depicted in red and green, respectively.
Ground truth masks are rendered in cyan. (a) HNN struggles to segment the pulmonary
bullae, whereas P-HNN captures it. (b) Part of the pleural effusion is erroneously
included by HNN, while left out of the P-HNN lung mask. (¢) P-HNN is better able
to capture finer details in the lung mask. (d) In this failure case, both HNN and
P-HNN erroneously include the right main bronchus; however, P-HNN better captures
infiltrate regions. (e) This erroneous ground-truth example, which was filtered out, fails
to include a portion of the right lung. Both HNN and P-HNN capture the region, but
P-HNN does a much better job of segmenting the rest of the lung.
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A Roadmap of Bottom-up Deep Pancreas
Segmentation: from Image Patch, Region, to
Holistically-nested CNNs (HNN), P-HNN,
Convolutional LSTM (context), -

ISTP Fellow,
2012-2014

P-Conv/Net

10



Fig. 2: “Multiscale Combinatorial Grouping” (MCG) [10] on three different scales of
learned boundary predication maps from HNN-B: Y;ﬁ%, Kﬁi, and Y;Z _ using the
original CT image as input (shown with ground truth delineation of pancreas). MCG
computes superpixels at each scale and produces a set of merged superpixel-based

object proposals. We only visualize the boundary probabilities p>10%.

Improved pancreas segmentation accuracy over previous state-of-the-art
work in Dice coefficients: from 50~60% to ~84%; ASD: from 5~6mm to
0.7mm; computational time from 3 hours to <2 minutes!



H. Roth, et al., DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. MICCAI (1) 2015: a6-564
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Fig. 1. Schematics of (a) the holistically-nested nets, in which multiple side outputs are
added, and (b) the HNN-I/B network architecture for both interior (left images) and
boundary (right images) detection pathways. We highlight the error back-propagation
paths to illustrate the deep supervision performed at each side-output layer after the
corresponding convolutional layer. As the side-outputs become smaller, the receptive
field sizes get larger. This allows HNN to combine multi-scale and multi-level outputs
in a learned weighted fusion layer (Figures adapted from [11] with permission).

H. Roth, et al., "Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation”, MICCAI, 2016



(e) HNN-I: Sagittal

e VB

(c) RF: Coronal (f) HNN-I: Coronal

H. Roth, et al., Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and
segmentation, Medical Image Analysis, 4a (2018) 94-107
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Fig. 4: The main construction units of the proposed RNN
sub-network and its input/output segmentation sequence. The
sequence of CNN sub-network outputs is shown in the first
row (a-e), is taken as the input of the bi-direction CLSTM
(g), which is an RNN architecture composed of 2 layers of
CLSTM (f) working in opposite directions. The third row (h-
I) presents the corresponding output sequence, which is sharp
and clean. Note that the missing pancreatic part in Y, (c),
in the green dashed box, is recovered by shape continuity
modeling in Y, (j). For visual clearity, we ommit the input
Yy in the bi-direction CLSTM (g), which is same as in (f).

H, 5,Co H;_4,Cr4 H;, C; Hi Gy HDLGE o Hiy G

Hi, Gy Hf,G7 HpyCr
g) Bi-direction CLSTM
J. Cai, et al., Pancreas Segmentation in CT and MRI Images via Domain

Specific Network Designing and Recurrent Neural Contextual Learning,
MICCAI 2017 https://arxiv.org/abs/1803.11303
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Fig. 8: Examples of output probability map: columns from left to right are the input CT/MRI image, results from HNN [12],
UNET [16], the proposed PNet-MSA sub-network, and the full CNN-RNN (“PNet-MSA+BiRNN"), and the ground truth. Our
model delivers the most clear probability maps which preserve detailed pancreatic boundaries.



Three Key Problems (lil)

Interleaved or Joint Text/Image Deep Mining at large unconstrained
environment or data sources = “big data, weak labels” (~216K 2D key
iImage slices extracted from >60K unique patient studies)

Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database (IEEE CVPR
2015, a proof of concept study)

Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database for
Automated Image Interpretation (its extension, JMLR, 17(107):1=31, 2016)

Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image
Annotation, (IEEE CVPR 2016¥

Unsupervised Category Discovery via LOOEed Deep Pseudo-Task Optimization Using a Large
Scale Radiology Image Database, IEEE WACV 2017, RSNA 2016 Best paper Award

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly—SuBervised
E/I?Cs%gclzaztbolré and Localization of Common Thorax Diseases, IEEE CVPR 2017; CVPR 2018,

»Clinical Impacts: eventually to build an automated mechanism to parse

and learn from hospital scale PACS-RIS databases to derive semantics
and knowledge - has to be deep learning based since effective image
features are very hard to be hand-crafted cross different diseases, Iimaging
protocols and modalities.

10/28/2018
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H. Shin, et al., Interleaved Text/Image
Deep Mining on a Large-Scale
Radiology Image Database, IEEE
CVPR 2015

H. Shin, et al., Interleaved Text/Image
Deep Mining on a Large-Scale
Radiology Image Database for
Automated Image Interpretation,
Journal of Machine Learning
Research, 17(107):1-31, 2016

X. Wang, et al., Unsupervised Joint
Mining of Deep Features and Image
Labels for Large-Scale Radiology
Image Categorization and Scene
Recognition, IEEE WACV 2017,
https://arxiv.org/abs/1701.06599

RSNA 2016, Best Paper Award in (Imaging) Informatics Category!



Learning to Read Chest X-ray using Deep Neural Networks (a
ittle more like humans’ interpretation?) [Shin et al., IEEE CVPR 2016]

Lung diseases
killing 4 million
people every
year, in
comparison to
Nearly 1.3
million

people die in
road crashes
each year!

Statistics from
internet

10/28/2018
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Detecting and Labeling Diseases in Chest X-Rays
with Deep Learning

April 14, 2016
Researchers from the National Institutes of Health in Bethesda, Maryland are using
NVIDIA GPUs and deep learning to automatically annotate diseases from chest x-

rays.

Accelerated by Tesla GPUs, the team trained their convolutional neural networks on
a publicly available radiology dataset of chest x-rays and reports to describe the characteristics of a disease, such as location, severity

and the affected organs.

aorta_thoracic / tortuous / mild opacity / lung / middle_lobe / calcified_granuloma / lung /

right /aorta_thoracic / tortuous middle_lobe / right / multiple
aorta_thoracic / tortuous
opacity / lung / base / left calcified_granuloma / lung /
hilum / right

Examples of annotation generations (light green box) compared to true annotations (yellow box) for input images in the test set.



ChestX-rayd: Hospital-scale Chest X-ray Database
and Benchmarks on Weakly-Supervised Classification
and Localization of Common Thorax Diseases

https://nihcc.app.box.com/v/IChestXray-NIHCC

Julryn2|1l :Izez 0 1 7




Disease Category Statistics

[tem # ‘ Openl \ Ov. ‘ ChestX-ray8 \ Ov.
Report 2435 - 108,948

Annotations 2,435 - - -
Atelectasis 315 122 5,789 | 3,286
Cardiomegaly 345 | 100 1,010 | 475
Eftusion 153 | 94 6,331 | 4,017
Infiltration 60 | 45 10,317 | 4,698
Mass 15 4 6,046 | 3,432
Nodule 106 | 18 1,971 | 1,041
Pneumonia 40 | 15 1,062 703
Pneumothorax 220 11 2,793 | 1,403
Normal 1,379 0 84,312 0

000
7000 6000 ,
|nfiltration

29



Framework Overview
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Input: Text Report

Attention-encoded Text Embedding

Firudings: left apical small pneumatharax n

g i oo T Word 1 i TieNet: Text-Image

::;"“m“ o~ - () Embedding Network
for Common Thorax
Disease Classification
and Reporting Iin
Chest X-rays, IEEE
CVPR 2018
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CVPR 2018
Figure 2. Framework of the proposed chest X-ray auto-ani Salt Lake Clty

produce saliency-encoded text and image embeddings.
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Attention Mining Copy

Mask Mtc_l

CAM Hf j

| ResNet-MSA |
| Feature maps |

Knowledge Preservation Multi-scale Aggregation: ResNet-MSA

ResNet-MSA N Feature maps
N, (reference)

ResNet-MSA
Np

Convolution 64
Bottleneck 256
Bottleneck 512
Bottleneck 1024
Bottleneck 2048
Conv. (512,1,1)
Conv. (256,1,1)

*| Feature maps

Resl\ilet—SD

Fig. 1: Architectures of the proposed attention mining (AM), knowledge preser-
vation (KP), and multi-scale aggregation (MSA). Red arrows in the KP module
indicate the path of back-propagation. The convolution parameters for MSA are
shown as (number of filters, kernel size, stride). See Sec. 2 for details.
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J. Cai, et al., "lterative Attention
Mining for Weakly Supervised
Thoracic Disease Pattern
Localization in Chest X-Rays",
MICCAI, 2018,
https://arxiv.orq/abs/1807.00958,




Training X-rays
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Fig. 2. Overall architecture of attention-guided curriculum learning (AGCL).
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X. Tang, et al., "lterative Attention-
Guided Curriculum Learning for
Weakly Supervised Classification
and Localization of Thoracic
Diseases on Chest Radiographs”,
MLMI. 2018,
https://arxiv.org/abs/1807.07a232,




Precision Medicine in Oncology => Deep Lesion Graphs in the “Wild":
Relationship Learning and Organization of Significant Radiology
Image Findings in a Diverse Large-scale Lesion Database

A NS
CVPR 2018
Salt Lake City

RSNA 2018, Best Paper Award in (Imaging) Informatics Category!
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Background

* Large-scale datasets with diverse images and dense annotations are
Important for both computer vision and medical image

* Crowd-sourcing can be used In to annotate computer vision datasets, but
Medical Imaging requires considerate specialized knowledge & training

* Mining Internet Images via Deep Learning can be used in computer vision
to acquire self-annotations;

* Fortunately, like web data in computer vision, a vast amount of loosely-
labeled and largely untapped data source does exist in the form of
Picture Archiving and Communication Systems (PACS/RIS).

* Similarly, can we mine the “unstructured but extremely informative”
PACS?

10/28/2018 35



Background

* Radiologists in their daily work
may routinely mark and measure
some significant abnormalities
or “lesions” on radiology images

* Collected over years and stored in
hospitals’ PACS/RIS

 Sometime known as “bookmarks”

* Used to assess patients’ conditions
or therapy responses

Long diameter = 78.6 mm
Short diameter = 58.8 mm

z
X
\

To the best of our knowledge, no prior work has been done on learning “deep lesion”
similarity graph & embedding via imaging on such a “large-scale” comprehensive dataset
with “weak” cues!



Deeplesion Database
https:.//nihcc.app.box.com/v/Deeplesion

* Mined from bookmarks (RECIST diameters) in
NIH's PACS

* 32,120 axial CT slices from 10,594 studies of
4,427 unigue patients; ~900K CT slices total

* 1-3 lesions in each image with |
size measurements (long-axis and short axis)

* 32,735 lesions altogether

* Convert any pair of diameters to a bounding-
boxes

¢ (xmin - 5' Ymin — 5'xmax + 5» Ymax + 5)
* Xmin = mln(xll,xlz,x21,x22),
* Xmax = Max(Xxqq1,X12,X21,X22)

10/28/2018 37



Problem Definition

Lesions in Deeplesion are basically unsorted and lack semantic labels, e.g., lung
nodule, mediastinal lymph node

Our goal: understand and organize a large quantity of lesions, or oncology findings,
by “Automated Instance-level Similarity Modeling & Topology-discovery Mining”

1. discover their types and locations
2. find similar lesions from a population of different patients, /.e., content-based retrieval

3. track the same lesions within the same patient’s several longitudinal studies, .e., lesion
Instance matching or tracking among multiple studies

https.//www.healthdatamanagement.com/news/oncology-ai-runs-on-the-arterys-mica-
medical-imaging-cloud-ai-platform

Our approach: learning “functional” deep feature representations for each instance
that capture & keep the similarity relationship in type, location, and size, etc.

Scientifically-viable, practical approaches on doing such Al/DL medical imaging task
at scale! = precision imaging measurements for oncology ...

10/28/2018 38



Related Work

* Deep Metric Learning
* Siamese network [1]
* Triplet network — “weak deep learning, or DL with weak data self-regularization!”

|£(A) = F(P)Ilz +m < [I£(A) = F(N)I2

* Triplet Loss with multiple labels with hierarchical structures [2]

* Our method shares the similar spirit with [2], but we lack well-defined supervision cues (to
define which pair is more similar than the other, and logically why?) given the significant
radiology findings in the collected dataset

* We proposed strategies to propose and leverage weak cues, e.g., self-supervised body part
regressor and iterative refinement, etc.

[1] J. Bromley et al. Signature verification using a “siamese” time delay neural network, NIPS 1994
[2] X. Zhang et al. Embedding label structures for fine-grained feature representation, CVPR 2016

10/28/2018 39



Related Work

* Lesion Retrieval (inter-patients)

* Existing methods typically focus on one type of lesion (e.g., lung lesion
or mammographic mass) and learn the similarity relationship based on
fully manually-annotated labels (or radiology reports)

* We learn deep lesion embedding on a large diverse dataset with
, 1N a manner when ° " are available!

* Lesion Matching (across intra-patient multiple time points)

* Existing work generally require organ segmentation or time-consuming
non-rigid volumetric registration and focus on certain lesion types

* QOur lesion embedding is fast and can match

Liu, Lu, Ye, Yu, Huang: Coarse-to-fine classification via parametric and

. ACM CIKM 2011
Bi, Wu, Lu, Liu, Tao, Wolf: AdaBoost on . [EEE CVPR 2011
10/28/2018
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supervision Cue (I): Lesion Type

* We randomly select 30% lesions and manually label them into 8 types: lung,
abdomen, mediastinum, liver, pelvis, soft tissue, kidney, and bone

* Coarse-scale attributes of the lesions

Bone  Mediastinum Lung Liver Kidney Abdomen Pelvis  Soft tissue

10/28/2018



supervision Cue (I): Lesion Type

* Mediastinum: mainly consists of lymph nodes (LNs) in the chest
* Abdomen: miscellaneous ones that are not in liver or kidney
» Soft tissue: lesions and LNs in the muscle, skin, fat, etc.

* Among the labeled samples, we randomly select 25% as training
seeds to predict pseudo-labels, 25% as the validation set, and the
other 50% as the test set

* We use labeled seed samples to train a classifier (RBF SVM) on
ImageNet pre-trained deep image features and apply it to all
unlabeled samples to get their pseudo-labels (may be noisy!)



supervision Cue (Il): Relative Body Location

* Xand Y: easy ©
» Z: self-supervised body part regression or regressor (SSBR) [3]

* SSBR [3] | . _ 2=10.59 (from SSBR) Long diameter = 78.6 mm
* Intuition: volumetric medical images are X~ 0.28,y=0.53 (elative) Short diameter = 58.8 mm
intrinsically Upper/Down structured or ordered 524

* The superior-inferior slice order information
(self-supervision) can be leveraged to learn
an deep appearance-based z predictor

[3] Yan, Lu, Summers. Unsupervised Body Part Regression via
Spatially Self-ordering Convolutional Neural Networks, ISBI 2018

10/28/2018



Supervision Cue (ll): Relative Body Location

* his the sigmoid function, g is the smooth L1 loss

* The order loss and distance loss terms collaborate to push each
slice score towards the correct direction relative to other slices

Backprop

Random
2D crops

Slice j

Randomly
pick i, j, k

LSSBR — Lorder + Ldist;

Order loss Distance loss
§51<5,<53<... 5951 = 53-5; = ...

Volume §

Slice j+k

Fc7 (512x1)

Global avg. pool. L .
ReLU6 dist

Minibatch BR] Convé (1x1,512,1)
Convl -

m—3
Do 9D = Ay,

Ai = Sjtk(i+1) = Sj+his

m—2
Slice scores: 5y, 55, 3, ... Lorder - = § :i=0 1Ogh (Sj+k(i—|—1) - 83+k?.)7

[3] Yan, Lu, Summers. Unsupervised Body Part Regression via

Spatially Self-ordering Convolutional Neural Networks, ISBI 2018

Figure 2. Framework of the self-supervised body part regressor

(SSBR).
10/28/2018



supervision Cue (Il): Relative Body Location

* In Deeplesion, some CT volumes are zoomed In on a portion of
the body, e.g., only the left half Is shown
* Technique: train SSBR on random crops of the axial slices

* Data Augmentation: SSBR does not perform well on rare body
parts that are much less frequent in the training set, e.g., head
and legs = inconsistence!

* Technique: train SSBR = examine the correlation coefficients () of slice
scores and slice indices to find rare parts = train SSBR again on a
resampled training set with hard volumes oversampled

10/28/2018 45



supervision Cue (lll): Lesion Size

z=10.59 (from SSBR)

o I_en gths Of |O N g a nd Sh O rt x= 0.28, y= 0.53 (relative) Long diameter = 78.6 mm

Short diameter = 58.8 mm

axes of lesion diameters

* Has already been annotated
and measured by radiologists

* Ranges from 0.2 to 343 mm
with a median of 15.6 mm




Initial 2D Segmentation

data expansion

Self-Paced 3D Segmentation

Figure 1. Overview of the proposed weakly supervised self-paced
segmentation with CNN (Sec.3) for 3D lesion segmentation.
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J. Cai, et al., "Accurate Weakly-
Supervised Deep Lesion Segmentation
using Large-Scale Clinical
Annotations: Slice- Propagated 3D
Mask Generation from 2D RECIST",
MICCAI, 2018, arXiv:I801.08614,




Y. Tang, et al., "Accurate Semi-
Automatic RECIST Labeling on CT
Scans with Cascaded Convolutional
Neural Networks", MICCAI, 2018,

(a) (b) . ) ) ) (i)
Fig. 3. Given the input test image (a), we can obtain the predicted lesion mask (b),
the transformed image (¢) from the STN, and the estimated keypoint heatmaps (d)-(g)
from the SHN. From (d)-(g), we obtain the estimated RECIST (h), which is close to
the annotations (i) labeled by radiologists. Red, green, and blue marks denote DL, R1,
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3-channel images

512-channel feature maps
® M

Convé
'n.

52D- channel feature maps

% M ($2DM) - channel feature maps
%1

Region
proposal
network

Key slice with ground-
truth bounding-boxes

Fig. 1. The framework of 3D context enhanced region-based CNN (3DCE) for lesion detection.
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Concatenate

vl-_--

Position-sensitive RO1

(PSROI) pooling

Lesion proposals

S-by-S-by-DM feature maps
*(number of proposals)

i f] FC7
. Reg
Detection resulis

K. Yan, et al., "3D Context
Enhanced Region-based
Convolutional Neural
Network for End-to-End
Lesion Detection”, MICCAI,
2018,




Group Data
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L. Zhang, et al.. Personalized

Pancreatic Tumor Growth

Prediction via Group
Learning, MICCAI 2017




Invasion Network

Timel & Time 2 T convl conv2 convl conv4 softmax
3x3x64 3x3x128 3x3x256 |[| 3x3x512 2

= - pad 1 pad 1 pad 1 pad 1
§ g stride 1 stride 1 stride 1 stride 1
g = pool 3%3 norm. pool 3x3

norm.

Personalized
Score Fusion

Expansion Network

Timel — Time2 convl conv2 conv3 conv4 fes

. Optical Flow hm'ﬁ.thﬁ 3x3x64 3x3x128 3Ix3x256 Ix3x512 256
. E . |- .1 pad | pad 1 pad 1 pad 1 dropout

stride | stride 1 stride 1 stride 1

pool 3x3 norm. pool 3x3 ——— -\
norm.

\

architecture for late fusion of the invasion and expansion networks for predicting tumor growth.

L. Zhang, et al., Convolutional
Invasion and Expansion

Networks for Tumor
r _ _ Growth Prediction, IEEE
L ;- Trans. Medical Imaging,
| ! 2018

(a) Tumor mask at (b) Tumor mask at (c) Tumor growth map  (d) 3-channel optical (e) Flow field (f) Tumor growth map
time | time 2 (timel — time2) flow (timel — time2) color coding (time2 — time3)
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t

ST-CLSTM ST-CLSTM

(s-1,1-1) (s-1.0)

! iy,

ST-CLSTM “=| ST-CLSTM
(s£-1) (s.)

' R

ST-CLSTM ST-CLSTM
(st1t-1) (s+1.0)

' '

ST-CLSTM : ST-CLSTM
(s+2.t-1) (s+2,0)

Spatial
Forget Gate

Temporal
Forget Gate

|
ST-ConvLSTM Network

ST-ConvLSTM Unite

Fig. 1. Left: The proposed Spatial-Temporal Convolutional LSTM (ST-ConvLSTM,
or ST-CLSTM) network for learning 4D longitudinal data to predict tumor growth. In
this example, 3 time points each with 4 spatially adjacent image slices (each slice is a
3-channel color image) are shown. Right: The ST-ConvLSTM unit.
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L. Zhang, et al., Spatial -
Temporal Convolutional
LSTMs: Learning 4D
Longitudinal Data for
Tumor Growth
Prediction, 2018




Bulld Triplet Network with Sequential Sampling

Lesion A B C D £ Triplet network Lesion embedding
Same type? v v v X
_Similar location?  Anchor v v X Don't care d(A,B) + Y3 . m; :
Similar size? v X Don't care Don’t care . i=1""1

< d(A,C) +m, +my

A ) <d(AD)+m; mp

< d(AE)
msz>myp >mqg >0

Sequential
sampling

Figure 1. The proposed framework. Using a triplet network, we learn a feature embedding for each lesion in our comprehensive DeepLesion

dataset. Training samples A—FE are selected with a sequential sampling strategy so as to make the embeddings respects similarity in type,
location, and size.

* With a flavor of “Gibbs Sampling”; sampling similarity orders according to each marginal/conditional
distribution (e.g., body location similarity), iteratively = to comply similarity scores into the joint distribution

o “Cue Priorities”, not all cues are created equally! > DL or DNN is “paradigm shifting” or “super component”?
* Ranking a series of samples to make them self-organize and move to the right space in the feature space!
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Triplet network with Sequential Sampling

* Do not use hard triplet mining
because of the noisy cues

* Note that there is l[abel noise in the
4% row of Fig. 3, where lesion D does
not have the same type with A ~ C
(soft tissue versus pelvis)

|£(A) = F(P)IIz +m < [If(A) = F(N)]I2

where an anchor A, a positive sample P with the
same label as A, and a negative sample N with a
different label. f(\) is the embedding function to be
learned and m is a predefined margin.

Figure 3. Sample training sequences. Each row is a sequence.

Columns 1-5 are examples of lesions A—F in Fig. 1, respectively.
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Triplet Network with Sequential Sampling

* Joint Loss function

* A selected sequence of 5 instances can be decomposed into three triplets:
{ABC. ACD and ADE}; Joint Loss =2 S

1
L = % ; [maX(O,diB — dic —|—m1)

+ max(0, d4c — dap + mo)
+max(0,d% p — d4p + mg)]

. . . msg > mo > mqp > 0
* [terative refinement learning

* With the learned similarity embedding, we can retrain the lesion type
classifier to get “cleaner” pseudo-labels (using deep embedding features),
then fine-tune the triplet network with a lower learning rate
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Network Architecture

* Backbone: VGG-16
* Multi-scale, multi-crop

* Output: a deep 1408D feature embedding vector for each lesion
Instance (@various of image sizes/dimensions, @1 mm/pixel)

EMN I EIJN eIl -3 FC MW Concat. | FC

Conv2_2 5x5x128 512
Conv3_3 SASKZO6 ol

*Convd 3 " 5x5x512 512 — 2048 » 1024 —
Conv5_3 (patch) 5x5x512 512

11T OO RV

(Il

Figure 4. Network architecture of the proposed triplet network.
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Lesion Organization: Retrieval & Matching

* Inter-patient content-based lesion retrieval: finding nearest neighbors of
query lesions = data-learned similarity score permitting!

* Intra-patient lesion matching: Sty 1 Stucy 2
graph-based edge pruning

Algorithm 1 Intra-patient lesion matching

Input: Lesions of the same patient represented by their embed-
dings; the study index s of each lesion; intra-study threshold
T ; inter-study threshold T%.

Output: Matched lesion groups.

1: Compute an intra-patient lesion graph G = (V, &), where V
are nodes (lesions) and &£ are edges. Denote d;; as the Eu-
clidean distance between nodes ¢, j.

2: Merge nodes 7 and j if s; = s; and d;; < T1.

Threshold: £ «+ £ — D, D = {(i,j) € E|dij > T>}.

4: Exclusion: £ «+ & —C,C = {{(i,7)|(i,3) € &, (i,k) €
5, 8; = s;\.,-,and d,{j 2 d,‘,;,—,}.

5: Extraction: Each node group with edge connections is con-
sidered as a matched lesion group.

(]
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Implementation Detalls: Image Preprocessing

* Rescale Image intensity to floating-point numbers in [0, 255]
using a single windowing (-1024 ~ 3071 HU)

* Resize spacing to 1 mm/pixel

* Crop a patch with 50 mm padding around each lesion’s
bounding-box

* Use 3 neighboring slices (interpolated at 2 mm inter-slice intervals)
to encode 3D information

* No data augmentation was used



Implementation Detalls: Training Schemes

* The maximum value of each dimension of the locations and sizes
Is normalized to 1

m1 =0.1,my =0.2,m3 =04
* 24 five-Instance sequences per mini-batch

* SGD with a learning rate of 0.002, reduced to 0.0002 at iteration
2K#, converges In 3K iterations

* To train SSBR, we used 800 random unlabeled CT volumes of 420
subjects from DeepLesion patient population



Experiments

* Visualization of Deeplesion: projecting
lesion densely-connected hyper-graph
Into a 2D map (£-S/NVE) !

* X- and Y-axes of the scatter map
correspond to the X~ and
Z-coordinates of the relative body
location of each lesion = organized by
lesion type, then location!

* |llustration of the distribution diversity of
Deeplesion dataset (https.//arxiv.org/abs/1710.01766)

10/28/2018

Figure 3. Visualization of the DeeplLesion dataset (test set). The x- and y-axes of the scatter map correspond to the x- and z-coordinates of
the relative body location of each lesion, respectively. Therefore, this map is similar to a frontal view of the human body. Colors indicate the
manually labeled lesion types. Sample lesions are exhibited to show the great diversity of DeepLesion, including: a. lung nodule; b. lung
cyst; c. costophrenic sulcus (lung) mass/fluid; d. breast mass; e. liver lesion; f. renal mass; g. large abdominal mass: h. posterior thigh mass; i.
iliac sclerotic lesion; j. perirectal lymph node (LN); k. pelvic mass; 1. periportal LN; m. omental mass; n. peripancre}ig lesion; o. splenic
lesion; p. subcutancous/skin nodule: q. ground glass opacity: r. axillary LN: s. subcarinal LN: t. vertebral body metastasis; u. thyroid nodule:
v. neck mass.



Mediastinu

Lung
Kidney
Soft tissue
Pelvis

Figure 5. t-SNE visualization of the lesion embeddings on the test set (4,927 samples) of DeepLesion. Colors indicate the manually labeled
lesion jtypes, We also split the samples to 128 clusters using K-means and show 3 random lesions in 12 representative clusters. We did not
choose to show closest samples because they are very similar. Best viewed in color.



Multi-scale Deep Lesion Appearance Vector

Experiments: Lesion Retrigval (210 femor o seoce sonbes

Figure 6. Examples of query lesions (first column) and the top-9 retrieved lesions on the test set of DeepLesion. In the first row, the blue
dashed box marks the lesion from a different patient than the query one, whereas the other 9 are all from the same patient. In rows 2—4, we

ﬁ)%é%gi% that the query and all retrieved lesions must come from different patients. Red dashed boxes indicate incorrect results, see t%xzt.



Longitudinal Intra-
patient Lesion Matching

Figure 7. The final lesion sequences found by processing the lesion
graph in Fig. 6 using Algo. 1 in the paper. They are the same with

instances to seqién¢es3 Fdrsquences are found and marked in the figure, where the numbers on the connections represent the lesion IDs. the ground-truth in Fig. 5.

Figure 5. All lesions of a sample patient in DeepLesion. Lesions in each study (CT examination) are listed in a column. Not all lesions
occur in each study, because the scan ranges of each study vary and radiologists only mark a few target lesions. We group the same lesion
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Figure 4. More examples of query lesions (first column) and the top-9 retrieved lesions on the test set of DeepLesion. We constrain that the
query and all retrieved lesions must come from different patients. Red dashed boxes indicate incorrect results. The lesions in each row are:
(a) Right axillary lymph nodes; (b) subcarinal lymph nodes; (c¢) lung masses or nodules near the pleura; (d) liver lesions near the liver dome;
(e) right kjoc/lglé;%(ﬁesions; (f) lesions near the anterior abdomen wall; (g) lesions on pelvic bones except the one in the red box,6v5vhich 1S a
peripheraﬁy ca Cl%ed mass. (h) inferior pelvic lesions; (i) spleen lesions except the ones in red boxes.



summary

* We present a large-scale and comprehensive dataset, DeepLesion,
Including significant radiology image findings mined from PACS

* can be used for multi-category lesion detection, retrieval, classification,
segmentation, -, the first study of its kind!

* Lesion Graph Embedding is learned with a triplet network to model
their similarity relationship in type, location, and size
* The only manual efforts needed are the class labels of some seed images
* Non-parametric deep radiology instance/knowledge representation

* Promising results are obtained in (a) inter-patient content-based lesion
retrieval and (b) intra-patient lesion matching, qualitatively and

quantitatively.

[5] Liu, Lu, Ye, Yu, Huang: Coarse-to-fine classification via parametric and
nonparametric models for computer-aided diagnosis. ACM CIKM 2011
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What's next?

“Clinician Lead Technology powered novel & effective
clinical workflows that translate”

https://www.nih.gov/about-nih/what-we-do/nih-
almanac/lasker-awards

Improve patient care through Harmonization of computing
intelligence and clinical sciences/practices
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