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Q1: Do deep learning and deep neural networks help in medical imaging or 
medical image analysis problems? (Yes)
 Deep CAD: Lymph node application package (52.9%  85%, 83%) and many CAD Applications

 Deep Segmentation  Precision Medicine in Radiology & Oncology: Pancreas segmentation application package (~53% 
 81.14% in Dice Coefficient) and beyond (prostate segmentation, pathological lung segmentation …)

 Deep Lung (Interstitial Lung Disease) Application Package + DL Reading Chest X-ray; Pathological Lung Segmentation, 
…

 Unsupervised category discovery using looped deep pseudo-task optimization (mapping large-scale radiology 
database with category meta-labels)  Learning from PACS! (CVPR 2015, JMRL 2016, RSNA 2016, WACV 2017)

 A large-scale Chest X-ray database (with NLP based annotation): Dataset and Benchmark (CVPR 2017; CVPR 2018: 
TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-rays, 
MICCAI 2018)

 Deep Lesion Graph (oncology cancer imaging) in the wild: Relationship Learning and Organization of Significant 
Radiology Image Findings in a Diverse Large-scale Lesion Database (CVPR 2018, MICCAI 2018s, RSNA 2018)

• Updates & Publications can be downloaded: www.cs.jhu.edu/~lelu; https://clinicalcenter.nih.gov/drd/staff/le_lu.html;   
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Perspectives
Why the previous or current computer-aided diagnosis (CADe; CADx) systems 
are not particularly successful yet? 
 Integrating machine decisions is not easy for human doctors: Good 
doctors hate to use; bad doctors are confused and do not know how to use? 
 Human-Machine collaborative decision making process

• “Making machine decision more interpretable, collaborative, explainable” is very critical for the 
collaborative system --> learning mid-level attributes or embedding?

• Preventive medicine: what human doctors cannot do (in very large scales: 
millions of general population, at least not economical):  first-reader 
population risk profiling …?

• Precision Medicine: a) new quantitative (segmentation) imaging 
biomarkers in precision medicine to better assist human doctors to make 
more precise decisions; b) patient-level similarity retrieval system for 
personalized diagnosis/therapy treatment: show by examples!
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Complexity & Composability



http://www.slate.com/articles
/technology/future_tense/20
16/06/microsoft_ceo_satya_n
adella_humans_and_ai_can_
work_together_to_solve_soci
ety.html



Three Key Problems (I)
Computer-aided Detection (CADe) and Diagnosis (CADx)

• Lung, Colon pre-cancer detection; Bone and Vessel imaging (6 years of industrial R&D at Siemens 
Corporation and Healthcare, 10+ product transfer; 13 conference papers in 
CVPR/ECCV/ICCV/MICCAI/WACV/CIKM, 12 US/EU patents, 27 Inventions)

• Lymph node, colon polyp, bone lesion detection using Deep CNN + Random View Aggregation (TMI 
2016; MICCAI 2014); MICCAI Young Researcher Publication Impact Award finalist 2017!

• Empirical analysis on Lymph node detection and interstitial lung disease (ILD) classification using 
CNN (TMI 2016b); prostate CAD (ISBI 2017; MICCA 2018), Vascular Calcification plaque (ISBI 2017), 
COLITIS (ISBI 2016), …

• Non-deep models for CADe using compositional representation (MICCAI 2014b) and +mid-level cues 
(MICCAI 2015b); deep regression based multi-label ILD prediction (in submission); missing label issue 
in ILD (ISBI 2016); ISBI 2017 …

Clinical Impacts: producing various high performance “second or first 
reader” CAD use cases and applications  effective imaging based 
prescreening (triage) tools on a cloud based platform for large population 
preventive profiling 
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Automated Lymph Node Detection

• Difficult due to large variations in appearance, location and pose.
• Plus low contrast against surrounding tissues.

Abdominal lymph node in CTMediastinal lymph node in CT



Make Shallow to Go Deeper via Mid-level Cues? 
[Seff et al., MICCAI 2015]

• We explore a learned transformation scheme for producing 
enhanced semantic input for HOG, based on LN-selective visual 
responses.

• Mid-level semantic boundary cues learned from segmentation.

• All LNs in both target regions are manually segmented by 
radiologists.

Target region # Patients # LNs

Mediastinal 90 389

Abdominal 86 595

NDSEG Fellow, 
CS PhD student,
3nd year, Princeton



Deep models: Random Sets of Convolutional Neural Network 
Predictions via Compositional Representation 
[Roth et al. MICCAI 2014, Shin et al. TMI 2016; Roth et al. TMI 2016]

Application to appearance modeling and 
detecting lymph node 

Random translations, 
rotations and scale

Senior Research 
Scientist, NVIDIA



Generalizable? Colon CADe Results using a deeper CNN on 1186 patients 
(or 2372 CTC volumes) via fine-tuning AlexNet [Roth et al., TMI 2016]

[SVM baseline] Summers, et a., Computed tomographic virtual colonoscopy computer-aided polyp 
detection in a screening population, Gastroenterology, vol. 129, no. 6, pp.1832–1844, 2005



2nd year PhD 
student, NSF 
Fellow, Harvard

[Nogues et al., MICCAI 2016]

MICCAI 2016 Travel Award 



Atherosclerotic Vascular Calcification Detection and Segmentation on Low Dose Computed 
Tomography Scans …, Liu et al., IEEE ISBI 2017
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COLITIS DETECTION ON COMPUTED TOMOGRAPHY USING REGIONAL CONVOLUTIONAL 
NEURAL NETWORKS, Liu et al., IEEE ISBI 2016
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*Detecting the undetectables? 

*Fitting in practical/real clinical 
settings in the wild??



Semantic Segmentation in Medical Image Analysis
• “DeepOrgan” for pancreas segmentation (MICCAI 2015) via scanning superpixels using multi-

scale deep features (“Zoom-out”) and probability map embedding.
• Deep segmentation on pancreas and lymph node clusters with Holistically-nested neural 

networks as building blocks to learn unary (segmentation mask) and pairwise (labeling 
segmentation boundary) CRF terms + spatial aggregation or + structured optimization, ISBI 
2016, MICCAI 2016. 

• The focus of recent MICCAI 2016-2018 papers since this is a much needed task   Small
datasets; (de-)compositional representation is still the key. Scale up to thousands, thousands 
of patients if not more than that; weakly supervised segmentation  Effective and Efficient 
Precision Biomarkers, even predicting the Prognosis Tumor Growth (DL tumor growth model 
prediction MICCAI 2017, TMI 2018, MICCAI 2018)

Clinical Impacts: semantic segmentation can help compute clinically 
more accurate and desirable precision imaging bio-markers or 
measurements  precision imaging personalized treatment and therapy 
 Less Guess More Doing (beyond RECIST 1.1)…
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Towards whole Body precision 
measurements or computable 
precision imaging biomarkers



“Robust Whole Body 3D Bone 
Masking via Bottom-up 
Appearance Modeling and 
Context Reasoning in Low-Dose 
CT Imaging”, Lu et al., IEEE 
WACV 2016



Bone Mineral Density (BMD) 
scores, Muscle/Fat volumetric 
measurements in whole body or 
arbitrary FOV imaging  …  lung 
nodules, bone lesions, head-
and-neck radiation sensitive 
organs, segmenting flexible soft 
anatomical structures for 
precision medicine, all clinically 
needed!

Semantic Segmentation on PET-CT 
Patient Imaging (pathological …)

*robust, precision/accuracy, speed!
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MICCAI 2017 YSA runner-up 



A Roadmap of Bottom-up Deep Pancreas 
Segmentation: from Image Patch, Region, to 
Holistically-nested CNNs (HNN), P-HNN, 
Convolutional LSTM (context), …  

P-ConvNet

ISTP Fellow,
2012-2014
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Improved pancreas segmentation accuracy over previous state-of-the-art 
work in Dice coefficients: from 50~60% to ~84%; ASD: from 5~6mm to 
0.7mm; computational time from 3 hours to <2 minutes!



H. Roth, et al., DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation. MICCAI (1) 2015: 556-564



H. Roth, et al., "Spatial Aggregation of Holistically-Nested Networks for Automated Pancreas Segmentation", MICCAI, 2016



H. Roth, et al., Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and 
segmentation, Medical Image Analysis, 45 (2018) 94–107



J. Cai, et al., Pancreas Segmentation in CT and MRI Images via Domain 
Specific Network Designing and Recurrent Neural Contextual Learning, 
MICCAI 2017 https://arxiv.org/abs/1803.11303
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Interleaved or Joint Text/Image Deep Mining at large unconstrained 
environment or data sources  “big data, weak labels” (~216K 2D key 
image slices extracted from >60K unique patient studies)

• Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database (IEEE CVPR 
2015, a proof of concept study)

• Interleaved Text/Image Deep Mining on a Large-Scale Radiology Image Database for 
Automated Image Interpretation (its extension, JMLR, 17(107):1−31, 2016) 

• Learning to Read Chest X-Rays: Recurrent Neural Cascade Model for Automated Image 
Annotation, (IEEE CVPR 2016)

• Unsupervised Category Discovery via Looped Deep Pseudo-Task Optimization Using a Large 
Scale Radiology Image Database, IEEE WACV 2017, RSNA 2016 Best paper Award

• ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised 
Classification  and Localization of Common Thorax Diseases, IEEE CVPR 2017; CVPR 2018,
MICCAI 2018

Clinical Impacts: eventually to build an automated mechanism to parse 
and learn from hospital scale PACS-RIS databases to derive semantics 
and knowledge … has to be deep learning based since effective image 
features are very hard to be hand-crafted cross different diseases, imaging 
protocols and modalities.

10/28/2018

Three Key Problems (III)



X. Wang, et al., Unsupervised Joint 
Mining of Deep Features and Image 
Labels for Large-Scale Radiology 
Image Categorization and Scene 
Recognition, IEEE WACV 2017, 
https://arxiv.org/abs/1701.06599

H. Shin, et al., Interleaved Text/Image 
Deep Mining on a Large-Scale 
Radiology Image Database, IEEE 
CVPR 2015

H. Shin, et al., Interleaved Text/Image 
Deep Mining on a Large-Scale 
Radiology Image Database for 
Automated Image Interpretation, 
Journal of Machine Learning 
Research, 17(107):1−31, 2016

RSNA 2016, Best Paper Award in (Imaging) Informatics Category!



Learning to Read Chest X-ray using Deep Neural Networks (a 
little more like humans’ interpretation?) [Shin et al., IEEE CVPR 2016]

Lung diseases 
killing 4 million 
people every 
year, in 
comparison to 
Nearly 1.3 
million 
people die in 
road crashes
each year!

Statistics from 
internet …
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ChestX-ray8: Hospital-scale Chest X-ray Database 
and Benchmarks on Weakly-Supervised Classification 

and Localization of Common Thorax Diseases

https://nihcc.app.box.com/v/ChestXray-NIHCC



Disease Category Statistics

29



Framework Overview

30
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TieNet: Text-Image 
Embedding Network 
for Common Thorax 
Disease Classification 
and Reporting in 
Chest X-rays, IEEE 
CVPR 2018
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J. Cai, et al., "Iterative Attention 
Mining for Weakly Supervised 
Thoracic Disease Pattern 
Localization in Chest X-Rays", 
MICCAI, 2018, 
https://arxiv.org/abs/1807.00958,
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X. Tang, et al., "Iterative Attention-
Guided Curriculum Learning for 
Weakly Supervised Classification 
and Localization of Thoracic 
Diseases on Chest Radiographs", 
MLMI, 2018, 
https://arxiv.org/abs/1807.07532,



Precision Medicine in Oncology  Deep Lesion Graphs in the “Wild”: 
Relationship Learning and Organization of Significant Radiology 

Image Findings in a Diverse Large-scale Lesion Database 

10/28/2018 34

RSNA 2018, Best Paper Award in (Imaging) Informatics Category!



Background

• Large-scale datasets with diverse images and dense annotations are 
important for both computer vision and medical image

• Crowd-sourcing can be used in to annotate computer vision datasets, but 
Medical Imaging requires considerate specialized knowledge & training

• Mining Internet Images via Deep Learning can be used in computer vision 
to acquire self-annotations; 

• Fortunately, like web data in computer vision, a vast amount of loosely-
labeled and largely untapped data source does exist in the form of 
Picture Archiving and Communication Systems (PACS/RIS).

• Similarly, can we mine the “unstructured but extremely informative” 
PACS?
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Background
• Radiologists in their daily work 

may routinely mark and measure 
some significant abnormalities 
or “lesions” on radiology images

• Collected over years and stored in 
hospitals’ PACS/RIS

• Sometime known as “bookmarks”
• Used to assess patients’ conditions 

or therapy responses

Long diameter = 78.6 mm
Short diameter = 58.8 mm

z = 0.59 (from SSBR)
x = 0.28, y = 0.53 (relative)

To the best of our knowledge, no prior work has been done on learning “deep lesion” 
similarity graph & embedding via imaging on such a “large-scale” comprehensive dataset 
with “weak” cues!
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DeepLesion Database 
https://nihcc.app.box.com/v/DeepLesion

• Mined from bookmarks (RECIST diameters) in 
NIH’s PACS

• 32,120 axial CT slices from 10,594 studies of 
4,427 unique patients; ~900K CT slices total

• 1–3 lesions in each image with 
size measurements (long-axis and short axis)

• 32,735 lesions altogether
• Convert any pair of diameters to a bounding-

boxes
• ሺ𝑥௠௜௡ െ 5, 𝑦௠௜௡ െ 5, 𝑥௠௔௫ ൅ 5, 𝑦௠௔௫ ൅ 5ሻ
• 𝑥௠௜௡ ൌ min 𝑥ଵଵ, 𝑥ଵଶ, 𝑥ଶଵ, 𝑥ଶଶ , 
• 𝑥௠௔௫ ൌ maxሺ𝑥ଵଵ, 𝑥ଵଶ, 𝑥ଶଵ, 𝑥ଶଶሻ
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Problem Definition
• Lesions in DeepLesion are basically unsorted and lack semantic labels, e.g., lung 

nodule, mediastinal lymph node
• Our goal: understand and organize a large quantity of lesions, or oncology findings, 

by “Automated Instance-level Similarity Modeling & Topology-discovery Mining” 
1. discover their types and locations
2. find similar lesions from a population of different patients, i.e., content-based retrieval
3. track the same lesions within the same patient’s several longitudinal studies, i.e., lesion 

instance matching or tracking among multiple studies 
https://www.healthdatamanagement.com/news/oncology-ai-runs-on-the-arterys-mica-
medical-imaging-cloud-ai-platform

• Our approach: learning “functional” deep feature representations for each instance 
that capture & keep the similarity relationship in type, location, and size, etc.

• Scientifically-viable, practical approaches on doing such AI/DL medical imaging task 
at scale!  precision imaging measurements for oncology ...
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Related Work
• Deep Metric Learning

• Siamese network [1]
• Triplet network – “weak deep learning, or DL with weak data self-regularization!”

• Triplet Loss with multiple labels with hierarchical structures [2]
• Our method shares the similar spirit with [2], but we lack well-defined supervision cues (to 

define which pair is more similar than the other, and logically why?) given the significant 
radiology findings in the collected dataset 

• We proposed strategies to propose and leverage weak cues, e.g., self-supervised body part 
regressor and iterative refinement, etc.

[1] J. Bromley et al. Signature verification using a “siamese” time delay neural network, NIPS 1994
[2] X. Zhang et al. Embedding label structures for fine-grained feature representation, CVPR 2016
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Related Work
• Lesion Retrieval (inter-patients)

• Existing methods typically focus on one type of lesion (e.g., lung lesion 
or mammographic mass) and learn the similarity relationship based on 
fully manually-annotated labels (or radiology reports) 

• We learn deep lesion embedding on a large diverse dataset with weak 
cues, in a self-regularization manner when “big data” are available!

• Lesion Matching (across intra-patient multiple time points)
• Existing work generally require organ segmentation or time-consuming 

non-rigid volumetric registration and focus on certain lesion types 
• Our lesion embedding is fast and can match all “categories” of lesions

Liu, Lu, Ye, Yu, Huang: Coarse-to-fine classification via parametric and nonparametric models for 
computer-aided diagnosis. ACM CIKM 2011
Bi, Wu, Lu, Liu, Tao, Wolf: AdaBoost on low-rank PSD matrices for metric learning. IEEE CVPR 2011
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Supervision Cue (I): Lesion Type
• We randomly select 30% lesions and manually label them into 8 types: lung, 

abdomen, mediastinum, liver, pelvis, soft tissue, kidney, and bone
• Coarse-scale attributes of the lesions
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Supervision Cue (I): Lesion Type

Mediastinum: mainly consists of lymph nodes (LNs) in the chest
Abdomen: miscellaneous ones that are not in liver or kidney
 Soft tissue: lesions and LNs in the muscle, skin, fat, etc. 

• Among the labeled samples, we randomly select 25% as training 
seeds to predict pseudo-labels, 25% as the validation set, and the 
other 50% as the test set 

• We use labeled seed samples to train a classifier (RBF SVM) on 
ImageNet pre-trained deep image features and apply it to all 
unlabeled samples to get their pseudo-labels (may be noisy!)
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Supervision Cue (II): Relative Body Location 

• X and Y : easy 
• Z : self-supervised body part regression or regressor (SSBR) [3]
• SSBR [3]

• Intuition: volumetric medical images are 
intrinsically Upper/Down structured or ordered!

• The superior-inferior slice order information
(self-supervision) can be leveraged to learn 
an deep appearance-based z predictor

Long diameter = 78.6 mm
Short diameter = 58.8 mm

z = 0.59 (from SSBR)
x = 0.28, y = 0.53 (relative)

[3] Yan, Lu, Summers. Unsupervised Body Part Regression via 
Spatially Self-ordering Convolutional Neural Networks, ISBI 2018
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Supervision Cue (II): Relative Body Location 
• h is the sigmoid function, g is the smooth L1 loss
• The order loss and distance loss terms collaborate to push each 

slice score towards the correct direction relative to other slices

[3] Yan, Lu, Summers. Unsupervised Body Part Regression via 
Spatially Self-ordering Convolutional Neural Networks, ISBI 2018
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Supervision Cue (II): Relative Body Location 

• In DeepLesion, some CT volumes are zoomed in on a portion of 
the body, e.g., only the left half is shown

• Technique: train SSBR on random crops of the axial slices

• Data Augmentation: SSBR does not perform well on rare body 
parts that are much less frequent in the training set, e.g., head 
and legs  inconsistence!

• Technique: train SSBR  examine the correlation coefficients (r) of slice 
scores and slice indices to find rare parts  train SSBR again on a 
resampled training set with hard volumes oversampled
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Supervision Cue (III): Lesion Size

• Lengths of long and short 
axes of lesion diameters

• Has already been annotated 
and measured by radiologists

• Ranges from 0.2 to 343 mm 
with a median of 15.6 mm 
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J. Cai, et al., "Accurate Weakly-
Supervised Deep Lesion Segmentation 
using Large-Scale Clinical 
Annotations: Slice- Propagated 3D 
Mask Generation from 2D RECIST", 
MICCAI, 2018, arXiv:1801.08614,
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Y. Tang, et al., "Accurate Semi-
Automatic RECIST Labeling on CT 
Scans with Cascaded Convolutional 
Neural Networks", MICCAI, 2018,
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K. Yan, et al., "3D Context 
Enhanced Region-based 
Convolutional Neural 
Network for End-to-End 
Lesion Detection", MICCAI, 
2018,
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L. Zhang, et al., Personalized 
Pancreatic Tumor Growth 
Prediction via Group 
Learning, MICCAI 2017
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L. Zhang, et al., Convolutional 
Invasion and Expansion
Networks for Tumor 
Growth Prediction, IEEE 
Trans. Medical Imaging, 
2018 
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L. Zhang, et al., Spatial-
Temporal Convolutional 
LSTMs: Learning 4D 
Longitudinal Data for 
Tumor Growth 
Prediction, 2018



Build Triplet Network with Sequential Sampling

• With a flavor of “Gibbs Sampling”; sampling similarity orders according to each marginal/conditional 
distribution (e.g., body location similarity), iteratively to comply similarity scores into the joint distribution

• “Cue Priorities”, not all cues are created equally!  DL or DNN is “paradigm shifting” or “super component”?
• Ranking a series of samples to make them self-organize and move to the right space in the feature space!
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Triplet network with Sequential Sampling

• Do not use hard triplet mining 
because of the noisy cues

• Note that there is label noise in the 
4th row of Fig. 3, where lesion D does 
not have the same type with A ~ C 
(soft tissue versus pelvis) 

where an anchor A, a positive sample P with the 
same label as A, and a negative sample N with a 
different label. f(.) is the embedding function to be 
learned and m is a predefined margin.
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Triplet Network with Sequential Sampling

• Joint Loss function
• A selected sequence of 5 instances can be decomposed into three triplets: 

{ABC, ACD and ADE} ; Joint Loss 

• Iterative refinement learning
• With the learned similarity embedding, we can retrain the lesion type 

classifier to get “cleaner” pseudo-labels (using deep embedding features), 
then fine-tune the triplet network with a lower learning rate 
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Network Architecture
• Backbone: VGG-16
• Multi-scale, multi-crop
• Output: a deep 1408D feature embedding vector for each lesion 

instance (@various of image sizes/dimensions, @1 mm/pixel)
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Lesion Organization: Retrieval & Matching
• Inter-patient content-based lesion retrieval: finding nearest neighbors of 

query lesions  data-learned similarity score permitting!
• Intra-patient lesion matching:

graph-based edge pruning
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Implementation Details: Image Preprocessing

• Rescale image intensity to floating-point numbers in [0, 255] 
using a single windowing (-1024 ~ 3071 HU)

• Resize spacing to 1 mm/pixel 
• Crop a patch with 50 mm padding around each lesion’s 

bounding-box 
• Use 3 neighboring slices (interpolated at 2 mm inter-slice intervals) 

to encode 3D information 
• No data augmentation was used 
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Implementation Details: Training Schemes

• The maximum value of each dimension of the locations and sizes 
is normalized to 1 

• 24 five-instance sequences per mini-batch 
• SGD with a learning rate of 0.002, reduced to 0.0002 at iteration 

2K#, converges in 3K iterations
• To train SSBR, we used 800 random unlabeled CT volumes of 420 

subjects from DeepLesion patient population
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Experiments

• Visualization of DeepLesion: projecting 
lesion densely-connected hyper-graph
into a 2D map (t-SNE) ! 

• X- and Y-axes of the scatter map 
correspond to the X- and 
Z-coordinates of the relative body 
location of each lesion  organized by 
lesion type, then location!

• Illustration of the distribution diversity of 
DeepLesion dataset (https://arxiv.org/abs/1710.01766)
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Experiments: Lesion Retrieval
Multi-scale Deep Lesion Appearance Vector 
via Triplet Network to encode lesion type, 
location and size (thus sub-types)!
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Longitudinal Intra-
patient Lesion Matching
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Summary
• We present a large-scale and comprehensive dataset, DeepLesion, 

including significant radiology image findings mined from PACS
• can be used for multi-category lesion detection, retrieval, classification, 

segmentation, …, the first study of its kind!

• Lesion Graph Embedding is learned with a triplet network to model 
their similarity relationship in type, location, and size

• The only manual efforts needed are the class labels of some seed images
• Non-parametric deep radiology instance/knowledge representation 

• Promising results are obtained in (a) inter-patient content-based lesion 
retrieval and (b) intra-patient lesion matching, qualitatively and 
quantitatively.

[5] Liu, Lu, Ye, Yu, Huang: Coarse-to-fine classification via parametric and 
nonparametric models for computer-aided diagnosis. ACM CIKM 2011
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What’s next? 
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“Clinician Lead Technology powered novel & effective 
clinical workflows that translate”

https://www.nih.gov/about-nih/what-we-do/nih-
almanac/lasker-awards

Improve patient care through Harmonization of computing 
intelligence and clinical sciences/practices


