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a b s t r a c t 

Accurate and automatic organ segmentation from 3D radiological scans is an important yet challenging 

problem for medical image analysis. Specifically, as a small, soft, and flexible abdominal organ, the pan- 

creas demonstrates very high inter-patient anatomical variability in both its shape and volume. This in- 

hibits traditional automated segmentation methods from achieving high accuracies, especially compared 

to the performance obtained for other organs, such as the liver, heart or kidneys. To fill this gap, we 

present an automated system from 3D computed tomography (CT) volumes that is based on a two-stage 

cascaded approach—pancreas localization and pancreas segmentation. For the first step, we localize the 

pancreas from the entire 3D CT scan, providing a reliable bounding box for the more refined segmentation 

step. We introduce a fully deep-learning approach, based on an efficient application of holistically-nested 

convolutional networks (HNNs) on the three orthogonal axial, sagittal, and coronal views. The resulting 

HNN per-pixel probability maps are then fused using pooling to reliably produce a 3D bounding box of 

the pancreas that maximizes the recall. We show that our introduced localizer compares favorably to 

both a conventional non-deep-learning method and a recent hybrid approach based on spatial aggrega- 

tion of superpixels using random forest classification. The second, segmentation, phase operates within 

the computed bounding box and integrates semantic mid-level cues of deeply-learned organ interior and 

boundary maps, obtained by two additional and separate realizations of HNNs. By integrating these two 

mid-level cues, our method is capable of generating boundary-preserving pixel-wise class label maps that 

result in the final pancreas segmentation. Quantitative evaluation is performed on a publicly available 

dataset of 82 patient CT scans using 4-fold cross-validation (CV). We achieve a (mean ± std. dev.) Dice 

similarity coefficient (DSC) of 81.27 ± 6.27% in validation, which significantly outperforms both a previous 

state-of-the art method and a preliminary version of this work that report DSCs of 71.80 ± 10.70% and 

78.01 ± 8.20%, respectively, using the same dataset. 

© 2018 Published by Elsevier B.V. 
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1. Introduction 

Pancreas segmentation in computed tomography (CT) chal-

lenges current computer-aided diagnosis (CAD) systems. While au-

tomatic segmentation of numerous other organs in CT scans, such

as the liver, heart or kidneys, achieves good performance with

Dice similarity coefficients (DSCs) of > 90% ( Wang et al., 2014c;

Chu et al., 2013; Wolz et al., 2013 ), the pancreas’ variable shape,

size, and location in the abdomen limits segmentation accuracy
� The content of this article is covered by US Provisional Patent Applications of 
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∗ Corresponding authors. 

E-mail addresses: rothhr@mori.m.is.nagoya-u.ac.jp , h.roth@ucl.ac.uk (H.R. Roth), 

le.lu@nih.gov (L. Lu), rms@nih.gov (R.M. Summers). 

t  

g  

2  

p  

O  

m  

https://doi.org/10.1016/j.media.2018.01.006 

1361-8415/© 2018 Published by Elsevier B.V. 
o < 73% DSC being reported in the literature ( Wolz et al., 2013;

hu et al., 2013; Tong et al., 2015; Okada et al., 2015; Farag et al.,

014; Roth et al., 2015 ). Examples of pancreas as seen in CT are

hown in Fig. 1 . Previous pancreas segmentation work ( Wolz et al.,

013; Chu et al., 2013; Tong et al., 2015; Okada et al., 2015 ) are all

ased on performing volumetric multiple atlas registration ( Modat

t al., 2010; Avants et al., 2009, 2011 ) and executing robust la-

el fusion methods ( Wang et al., 2013; Bai et al., 2013; Wang

t al., 2014a ) to optimize the per-pixel organ labeling process. This

ype of organ segmentation strategy is widely used for many or-

an segmentation problems, such as the brain ( Wang et al., 2013;

014a ), heart ( Bai et al., 2013 ), lung ( Murphy et al., 2011 ), and

ancreas ( Wolz et al., 2013; Chu et al., 2013; Tong et al., 2015;

kada et al., 2015 ). These methods can be referred as a top-down

odel fitting approach, or more specifically, MALF (Multi-Atlas

https://doi.org/10.1016/j.media.2018.01.006
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Fig. 1. Examples of variations in appearance, shape, and size of the pancreas as seen in contrast enhanced CT after removal of the image background by masking the patient’s 

body. Manual ground truth annotations are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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egistration & Label Fusion). Another group of top-down frame-

orks ( Ecabert et al., 2008; Zheng et al., 2008; Ling et al., 2008 )

everages statistical model detection, e.g., generalized Hough trans-

orm ( Ecabert et al., 2008 ) or marginal space learning ( Zheng et al.,

008; Ling et al., 2008 ), for organ localization; and deformable sta-

istical shape models for object segmentation ( Cootes et al., 1994 ).

owever, due to the intrinsic huge 3D shape variability of the pan-

reas, statistical shape modeling has not been applied for pancreas

egmentation. 

Recently, a new bottom-up pancreas segmentation representa-

ion has been proposed in Farag et al. (2014) , which uses dense

inary image patch labeling confidence maps that are aggregated

o classify image regions, or superpixels ( Felzenszwalb and Hut-

enlocher, 2004; Pont-Tuset et al., 2017; Girshick et al., 2016 ), into

ancreas and non-pancreas label assignments. This method’s mo-

ivation is to improve segmentation accuracy of highly deformable

rgans, such as the pancreas, by leveraging mid-level visual repre-

entations of image segments. The segmentation performance was

urther advanced by our prior work Roth et al. (2015) , which pro-

osed a probabilistic bottom-up approach using a set of multi-

cale and multi-level deep convolutional neural networks (CNNs)

pplied in a sliding window fashion on local image patches in

rder to capture the complexity of pancreas appearance in CT

mages. The resulting system improved upon the performance of

arag et al. (2014) with a reported DSC of 71.8 ± 10.7% against

8.8 ± 25.6%. Compared to the MALF based pancreas segmentation

ork ( Wolz et al., 2013 ), Chu et al. (2013) , Tong et al. (2015) and

kada et al. (2015) that are evaluated using “leave-one-patient-

ut” (LOO) protocol, the bottom-up approaches using superpixel

epresentation ( Farag et al., 2014; Roth et al., 2015 ) have reported

omparable or higher DSC accuracy measurements, under more

hallenging 6-fold or 4-fold cross-validation 

1 Comparing the two

ottom-up approaches, the usage of deep CNN models has notice-

bly improved the performance stability, which is evident by the

ignificantly smaller standard deviation ( Roth et al., 2015 ) than all

ther top-down or bottom-up works ( Farag et al., 2014; Wolz et al.,

013; Chu et al., 2013; Tong et al., 2015; Okada et al., 2015 ). 

Deep CNNs have successfully been applied to many high-level

asks in medical imaging, such as recognition and object detection

 Yan et al., 2015 ). The main advantage of CNNs comes from the

act that end-to-end learning of salient feature representations for

he task at hand is more effective than hand-crafted features with
1 As discussed in Shin et al. (2016) , LOO can be considered as an extreme case 

f M -fold cross-validation with M = N when N patient datasets are available for 

xperiments. When M is decreasing and significantly smaller than N, M -fold cross- 

alidation (CV) becomes more challenging since there are less data for training and 

ore patient cases on testing. 

c  

(  

n  

i  

p  

l  
euristically tuned parameters ( Zheng et al., 2015 ). Similarly, CNNs

emonstrate promising performance for pixel-level labeling prob-

ems, e.g., semantic segmentation in recent computer vision and

edical imaging analysis work, e.g., fully convolutional neural net-

orks (FCN) ( Long et al., 2015 ), DeepLab ( Chen et al., 2014 ), SegNet

 Badrinarayanan et al., 2017 ) and U-Net ( Ronneberger et al., 2015 ). 

Another important type of networks are “holistically-nested

etworks” (HNN) ( Xie and Tu, 2015 ) which combine FCNs with 

eep supervision ( Lee et al., 2015 ) in order to get enhanced per-

ormance at different scales. Note that the HNN architecture was

rst proposed under the name “holistically-nested edge detection”

HED) as a deep learning based general image edge detection

ethod, but has also been shown to work effectively for other

emantic segmentation tasks ( Roth et al., 2016a; Harrison et al.,

017b ) 

These approaches have all garnered significant improvements

n performance over previous methods by applying state-of-the-

rt CNN-based image classifiers and representation to the semantic

egmentation problem in both domains. 

Semantic organ segmentation involves assigning a label to each

ixel in the image. On one hand, features for classification of single

ixels (or patches) play a major role, but on the other hand, factors

uch as edges, i.e., organ boundaries, appearance consistency, and

patial consistency, could greatly impact the overall system perfor-

ance ( Zheng et al., 2015 ). Furthermore, there are indications of

emantic vision tasks requiring hierarchical levels of visual percep-

ion and abstraction ( Xie and Tu, 2015 ). As such, generating rich

eature hierarchies for both the interior and the boundary of the

rgan could provide important “mid-level visual cues” for seman-

ic segmentation. Subsequent spatial aggregation of these mid-level

ues then has the prospect of improving semantic segmentation

ethods by enhancing the accuracy and consistency of pixel-level

abeling. 

A preliminary version of this work appears as Roth et al.

2016a) , where we demonstrate that a two-stage bottom-up lo-

alization and segmentation approach can improve upon the state

f the art. In this work, the major extension is that we de-

cribe an improved pancreas localization method by replacing the

nitial super-pixel based one, with a new general deep learning

ased approach. This methodological component is designed to

ptimize or maximize the pancreas spatial recall criterion while

educing the non-pancreas volume as much as possible. Specifi-

ally, we generate the per-pixel pancreas class probability maps

or “heat maps”) through an efficient combination of holistically-

ested convolutional networks (HNNs) in the three orthogonal ax-

al, sagittal, and coronal CT views. We fuse the three HNN out-

uts to produce a 3D bounding box covering the underlying, yet

atent in testing, pancreas volume by nearly 100%. In addition, we
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2.3: 2nd Stage: Pancreas Segmenta�on

2.2: 1st Stage: Pancreas Localiza�on
2.2.1: Regression Forest for Pancreas Localiza�on

[49], or

2.3.1 Mid-level Cues from HNNs and Mul�-view  
Fusion for Pancreas Segmenta�on, followed by

2.2.2: Classifica�on Forest on Superpixels for 
Organ Region Proposal [61], or

2.2.3: Mul�-view Max-pooled HNNs for Pancreas 
Localiza�on (Proposed)

2.3.2: Learning Organ-specific Segmenta�on 
Proposals via Boundary Cue , followed by

2.3.3: Spa�al Aggrega�on using Random Forests 
on Segmenta�on Proposal Features

Fig. 2. Flowchart of the proposed two-stage pancreas localization and segmenta- 

tion framework with the corresponding section numbers where each method is 

described. Section 2.2.1 and Section 2.2.2 describe alternative means of bottom- 

up organ localization and are compared to the proposed method ( Section 2.2.3 ). 

The remaining modules are part of our proposed pancreas segmentation approach 

( Section 2.3 ). 
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show that exactly the same HNN model architecture can be ef-

fective for the subsequent pancreas segmentation stage by inte-

grating both deeply learned boundary and appearance cues. This

also results in a simpler overall pancreas localization and seg-

mentation system using HNNs only, rather than the previous hy-

brid setup involving non-deep- and deep-learning method com-

ponents ( Roth et al., 2016a ). Lastly, our current method reports

an overall improved DSC performance compared to the prelimi-

nary work Roth et al. (2016a) and the sliding-window approach

in Roth et al. (2015) : DSC of 81.14 ± 7.3% versus 78.0 ± 8.2% and

71.8 ± 10.7% ( Roth et al., 2015 ), respectively. In summary, our main

novelties and contributions are proposing and validating new prob-

lem presentations on integrating deeply-learned organ interior and

boundary cues (extended from Roth et al., 2015 ); a new robust

and efficient multi-view pancreas segmentation fusion; and im-

portantly, a generic coarse-to-fine localization and segmentation

framework for organ segmentation (improved upon Roth et al.,

2016a ). 

The proposed two-stage process essentially performs 3D spatial

aggregation and assembling on the HNN-produced per-pixel pan-

creas probability maps that run on 2D axial, coronal, and sagittal

CT planes. This process operates exhaustively for pancreas local-

ization and selectively for pancreas segmentation. Therefore, this

work inherits a hierarchical and compositional visual represen-

tation of computing 3D object information aggregated from 2D

image slices or parts, in a similar spirit of Roth et al. (2014) ,

Farabet et al. (2013) and Lu et al. (2008) . Alternatively, there

are recent studies on directly using 3D convolutional neural net-

works for liver, brain segmentation ( Dou et al., 2016; Chen et al.,

2016a ) and volumetric vascular boundary detection ( Merkow et al.,

2016 ). Due to CNN memory restrictions, these 3D CNN approaches

adopt padded sliding windows or volumes to process the original

CT scans, such as 96 × 96 × 48 segments ( Merkow et al., 2016 ),

160 × 160 × 72 subvolumes ( Dou et al., 2016 ) and 80 × 80 × 80

windows ( Chen et al., 2016a ), which may cause segmentation

discontinuities or inconsistencies at overlapped window bound-

aries. We argue that learning shareable lower-dimensional 2D CNN

models may be more generalizable and handle the “curse-of-

dimensionality” issue better than their fully 3D counterparts, es-

pecially when used to parse complex 3D anatomical structures,

e.g., lymph node clusters ( Nogues et al., 2016; Roth et al., 2016b )

and the pancreas ( Roth et al., 2015; 2016a ). Analogous examples

of comparing compositional multi-view 2D CNNs versus direct 3D

deep models can be found in other computer vision problems:

1) video based action recognition where a two-stream 2D CNN

model ( Simonyan and Zisserman, 2014a ), capturing the image in-

tensity and motion cues, significantly improves upon the 3D CNN

method ( Karpathy et al., 2014 ); 2) the advantageous performance

of multi-view CNNs over volumetric CNNs in 3D Shape Recogni-

tion ( Su et al., 2015 ). The rest of this paper is organized as follows.

We describe the technical motivation and details of the proposed

approach in Section 2 . Experimental results and comparison with

related work are addressed in Section 3 . We conclude the paper,

and with extended discussion, in Section 4 . 

2. Methods 

In this work, we present a two-phased approach for automated

pancreas localization and segmentation . The pancreas localization

step aims to robustly compute a bounding box which, at the desir-

able setting, should cover the entire pancreas while pruning the

high majority volumetric space from any input CT scan without

any manual pre-processing. The second stage of pancreas segmen-

tation incorporates deeply learned organ interior and boundary

mid-level cues with subsequent spatial aggregation, focusing only

on the properly zoomed or cascaded pancreas location and spatial
xtents that are generated after the first phase. In Section 2.1 we

ntroduce the HNN model that proves effective for both stages.

fterwards, we focus on localization in Section 2.2 , which dis-

usses and contrasts a conventional approach to localization with

ewer CNN-based ones—a hybrid and a fully deep-learning ap-

roach. We show how the latter approach, which relies on HNNs,

rovides a simple, yet state-of-the-art, localization method. Impor-

antly, it relies on the same HNN architecture as the later segmen-

ation step. With localization discussed, we explain our segmenta-

ion approach in Section 2.3 , which relies on combining semantic

id-level cues produced from HNNs. Our approach to organ seg-

entation is based on simple, reproducible, yet effective, machine-

earning principles. In particular, we demonstrate the most effec-

ive configuration of our system is simply composed of cascading

nd aggregating outputs from six HNNs trained at three orthogonal

iews and two spatial scales. No multi-atlas registration or multi-

abel fusion techniques are employed. Fig. 2 provides a flowchart

epicting the makeup of our system. 

.1. Learning mid-level cues via holistically-nested networks for 

ocalization and segmentation 

In this work, we use the HNN architecture, to learn the pan-

reas’ interior and boundary image-labeling maps, for both local-

zation and segmentation. Object-level interior and boundary infor-

ation are referred to as mid-level visual cues. HNN has been used

uccessfully for extracting “edge-like” structures like blood vessels

n 2D retina images ( Fu et al., 2016 ). We however would argue and

alidate that it can serve as a suitable deep representation to learn

eneral raw pixel-in and label-out mapping functions, e.g., to per-

orm binary or even multi-labeled semantic image segmentation

asks. HED is developed from FCN ( Long et al., 2015 ) and enhanced

sing the multi-scale deep supervision at each convolutional lay-

rs ( Lee et al., 2015 ). The loss layer of HED is formulated as the

ame of FCN, performing the per-pixel classification cross-entropy

oss. This cross-entropy loss can be flexibly defined as discerning

amples of different classes: boundary versus non-boundary ( Xie

nd Tu, 2015; Fu et al., 2016 ), object (i.e., interior mask) or non-

bject regions ( Long et al., 2015; Hou et al., 2016; Harrison et al.,

017a ). Specifically, similar HED-based CNN architectures are used

or successfully detecting the saliency map of objects in images
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a(
 Hou et al., 2016 ). Harrison et al. (2017a) proposes and validates

n improved version of HED for direct pathological lung segmenta-

ion in CT images, via progressively adding more gradient flows for

etter network regularization and performance. We use these prin-

iples to segment the interior of organs. Last, the boundary loss

nd segmentation loss can be generally formulated together with a

ulti-task neural network, such as Chen et al. (2016b) . In this pa-

er, we exploit to integrate deeply learned boundary and segmen-

ation cues via explicit optimization of organ-specific object pro-

osals. Another possible approach is integrating the boundary in-

ormation channel within the structured prediction image segmen-

ation framework (e.g., conditional random field ( Fu et al., 2016 ) or

oundary neural field ( Nogues et al., 2016 )). 

HNN is designed to address two important issues: (1) train-

ng and prediction on the whole image end-to-end, i.e, holistically,

sing a per-pixel labeling cost; and (2) incorporating multi-scale

nd multi-level learning of deep image features ( Xie and Tu, 2015 )

ia auxiliary cost functions at each convolutional layer. HNN com-

utes the image-to-image or pixel-to-pixel prediction maps from

ny input raw image to its annotated labeling map, building on

ully convolutional neural networks ( Long et al., 2015 ) and deeply-

upervised nets ( Lee et al., 2014 ). The per-pixel labeling cost func-

ion ( Long et al., 2015; Xie and Tu, 2015 ) makes it feasible that

NN/FCN can be effectively trained using only several hundred an-

otated image pairs as opposed to using thousands of small image

atches to train a per-image cost function as commonly done in

liding window based CNN approaches ( Roth et al., 2015 ). This en-

bles the automatic learning of rich hierarchical feature represen-

ations and contexts that are critical to resolve spatial ambiguity

n the segmentation of organs. The network structure is initialized

ased on an ImageNet pre-trained VGGNet model ( Simonyan and

isserman, 2014b ). It has been shown that fine-tuning CNNs pre-

rained on general image classification tasks is helpful for low-level

asks, e.g., edge detection ( Xie and Tu, 2015 ). Furthermore, we can

tilize pre-trained edge-detection networks (trained on BSDS500

 Xie and Tu, 2015 )) to segment organ-specific boundaries. 

Network formulation . Our training data S I/B = { (X n , Y 
I/B 
n ) ,

 = 1 , . . . , N} where X n denotes cropped axial CT images X n (see

igs. 4 and 5 for details the cropping procedure), rescaled to

ithin [ 0 , . . . , 255 ] with a soft-tissue window of [ −160 , 240] HU

n order to allow fine-tuning from other models that have been

rained on natural images with this intensity range. Y I n ∈ { 0 , 1 } and

 

B 
n ∈ { 0 , 1 } denote the binary ground truths of the interior and

oundary map of the pancreas, respectively, for any corresponding

 n . Each image is considered holistically and independently as

n Xie and Tu (2015) . The network is able to learn features from

hese images alone from which interior and boundary prediction

aps can be produced, which we denote as HNN-I and HNN-B ,

espectively. 

HNN can efficiently generate multi-level image features due

o its deep architecture. Furthermore, multiple stages with differ-

nt convolutional strides can capture the inherent scales of or-

an edge/interior labeling maps. However, due to the difficulty

f learning such deep neural networks with multiple stages from

cratch, we use the pre-trained network provided by Xie and

u (2015) and fine-tuned to our specific training data sets S I / B . We

se the HNN network architecture with 5 stages, including strides

f 1, 2, 4, 8 and 16, respectively, and with different receptive field

izes as suggested by the authors. 2 

In addition to standard CNN layers, a HNN network has M side-

utput layers as shown in Fig. 3 . These side-output layers are

lso realized as classifiers in which the corresponding weights are

 = ( w 

(1) , . . . , w 

(M) ) . For simplicity, all standard network layer pa-
2 https://github.com/s9xie/hed . 
ameters are denoted as W . Hence, the following objective function

an be defined 

3 : 

 side ( W , w ) = 

M ∑ 

m =1 

αm 

l (m ) 
side 

( W , w 

m ) . (1)

ere, l side denotes an image-level loss function for side-outputs,

omputed over all pixels in a training image pair X and Y . The

erm αm 

allows to weight different side-output layers against

n each other. We found αm 

= 1 to work fine in practice. Note

hat, in HNNs, the side-output layers are connected to the stan-

ard CNN layers via deconvolutional layers and their parameters

re fixed to perform bilinear interpolation (see Fig. 6 ). This ap-

roach is identical to the use of deconvolutional layers for up-

ampling in FCNs ( Long et al., 2015 ) and allows the computa-

ion of a cross-entropy loss function for each side-output layer

y comparing to the ground truth per-pixel label. All HNN lay-

rs are path-connected and their parameters can be updated dur-

ng training via backpropagation ( Xie and Tu, 2015 ). Because of

he heavy bias towards negatively labeled pixels in the ground

ruth data, ( Xie and Tu, 2015 ) introduces a strategy to automat-

cally balance the loss between positive and negative classes via

 per-pixel class-balancing weight β . This offsets the imbalances

etween edge/interior ( y = 1 ) and non-edge/exterior ( y = 0 ) sam-

les. Specifically, a class-balanced cross-entropy loss function can

e used in Eq. (1) with j iterating over the spatial dimensions of

he image: 

 

(m ) 
side 

( W , w 

(m ) ) = −β
∑ 

j∈ Y + 
log P r 

(
y j = 1 | X ;W , w 

(m ) 
)
−

(1 − β) 
∑ 

j∈ Y −
log P r 

(
y j = 0 | X ;W , w 

(m ) 
)
. (2) 

ere, β is simply | Y −| / | Y | and 1 − β = | Y + | / | Y | , where | Y −| and

 Y + | denote the ground truth set of negatives and positives , re-

pectively. In contrast to Xie and Tu (2015) , where β is com-

uted for each training image independently, we use a constant

alancing weight computed on the entire training set. This is be-

ause some training slices might have no positives at all and oth-

rwise would be ignored in the loss function. The class probability

 r(y j = 1 | X;W, w 

(m ) ) = σ (a (m ) 
j 

) ∈ [0 , 1] is computed on the activa-

ion value at each pixel j using the sigmoid function σ (.). Now,

rgan edge/interior map predictions ˆ Y (m ) side = σ ( ̂  A (m ) side ) can

e obtained at each side-output layer, where ˆ A (m ) side ≡ { a (m ) 
j 

, j =
 , . . . , | Y |} are activations of the side-output of layer m . Finally, a

weighted-fusion” layer is added to the network that can be simul- 

aneously learned during training. The loss function at the fusion

ayer L fuse is defined as 

 fuse ( W , w , h ) = Dist 
(
Y, ̂  Y fuse 

)
, (3)

here ˆ Y fuse = σ
(∑ M 

m =1 h 
ˆ A side 
m 

)
with h = ( h 1 , . . . , h M 

) being fusion

eights that are learned within a convolutional layer with kernel

ize 1 × 1 that is applied to the concatenated side output layers.

ist (., .) is a distance measure between the fused predictions and

he ground truth label map. We use cross-entropy loss for this pur-

ose. Hence, the following objective function can be minimized via

tandard stochastic gradient descent and back propagation as in

ie and Tu (2015) : 

( W , w , h ) � = argmin ( L side ( W , w ) + L fuse ( W , w , h ) ) (4) 

esting phase . Given image X , we obtain both interior ( HNN-I ) and

oundary ( HNN-B ) predictions from the models’ side output layers

nd the weighted-fusion layer as in Xie and Tu (2015) : 

ˆ Y I fuse , ̂
 Y I 1 
side 

, . . . , ̂  Y I M 
side 

)
= HNN-I ( X, ( W , w , h ) � ) (5) 
3 We follow the notation of ( Xie and Tu, 2015 ). 

https://github.com/s9xie/hed
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Fig. 3. Schematics of (a) a holistically-nested network, in which multiple side outputs are added, and (b) the HNN-I/B network architecture for both interior (left images) and 

boundary (right images) detection pathways. We highlight the error back-propagation paths to illustrate the deep supervision performed at each side-output layer after the 

corresponding convolutional layer. As the side-outputs become smaller, the receptive field sizes get larger. This allows HNN to combine multi-scale and multi-level outputs 

in a learned weighted fusion layer. The ground truth images are inverted for aided visualization (Figures adapted from Xie and Tu, 2015 with permission). 

Fig. 4. Candidate bounding box region generation pipeline (left to right). Gold standard pancreas in red. We start from CT images are tightly cropped around the patient’s 

based on a simple threshold and connected component analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 5. Candidate bounding box region generation. Gold standard pancreas in red, blobs of ≥ 0.5 probabilities in green, the selected largest 3D connected component in 

purple, the resulting candidate bounding box that is used for tightly cropping the images is shown in yellow (no margin has been added). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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(
ˆ Y B fuse , ̂

 Y B 1 
side 

, . . . , ̂  Y B M 
side 

)
= HNN-B ( X, ( W , w , h ) � ) (6)

Here, HNN-I/B (·) denotes the interior/boundary prediction maps

estimated by the CNN networks using the optimized parameters

( W , w , h ) � . 
.2. Pancreas localization 

Segmentation performance can be enhanced if irrelevant re-

ions of the CT volume are pruned out. Conventional organ local-

zation methods using random forest regression ( Criminisi et al.,

013; Lay et al., 2013 ), which we explain in Section 2.2.1 , may
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Fig. 6. The side-output and fused prediction maps from HNN-I : ˆ Y I/B 1 
side 

, ˆ Y I/B M 
side 

, and ˆ Y I/B 

fuse 
applied for pancreas segmentation, after the localization stage. As can be seen, the 

side-outputs from deeper within the network become more semantically coherent to the pancreas. Each side output is upsampled to the same size via bilinear interpolation 

implemented via deconvolutional layers. 
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ot guarantee that the regressed organ bounding box contains the

argeted organ with extremely high sensitivities on the pixel-level

overage. In Section 2.2.2 we outline a superpixel based approach

 Farag et al., 2014 ), based on hand-crafted and CNN features, that

s able to provide improved performance. While this is effective,

he complexity involved motivates our own development of a sim-

ler and more accessible newly proposed multi-view HNN fusion

ased procedure. This is explained in Section 2.2.3 . The output of

he localization method will later feed into a more detailed and

ccurate segmentation method combining multiple mid-level cues

rom HNNs as illustrated in Fig. 2 . 

.2.1. Regression forest 

Object localization by regression has been studied extensively

n the literature including ( Criminisi et al., 2013; Cuingnet et al.,

012; Lay et al., 2013 ). The general idea is to predict an off-

et vector �x ∈ R 

3 for a given image patch I ( x ) centered about

 ∈ R 

3 . The predicted object position is then given as x + �x . This

s repeated for many examples of image patches and then ag-

regated to produce a final predicted position. Aggregation can

e done with non-maximum suppression on prediction voting

aps, mean aggregation ( Criminisi et al., 2013 ), cluster medoid

ggregation ( Cuingnet et al., 2012 ), and the use of local ap-

earance with discriminative models to accept or reject predic-

ions ( Lay et al., 2013 ). The pancreas can be localized by regres-

ion due to their locations in the body in correlation to other

natomical structures. The objective is to predict bounding boxes

(x center , �x lower , �x upper ) ∈ R 

3 ×3 where x center is the center of the

ancreas and x center + �x lower and x center + �x upper are the lower

nd upper corner of the pancreas bounding box respectively. The

ddition of the extra three parameters follows from the obser-

ation that the center of the bounding box is not necessarily

he center of the localized object. The pancreas Regression For-

st predicts ( �x, �x lower , �x upper ) for a given image patch I ( x ).

his produces pancreas bounding box candidates of the form (x +
x, �x lower , �x upper ) . We additionally use a discriminative model

o accept or reject predictions x + �x as in Lay et al. (2013) . Fi-

ally, accepted predictions are aggregated using non-maximum

uppression over probability scores and then the bounding boxes

re ranked by the count of accepted predictions within the

ox. The box with the highest count of predictions is kept as

he final prediction. Training regression forest in this work uses

00 mm × 100 mm × 100 mm Haar features and is constrained to

he maximum depth of 10. The decision criteria optimization is

ased on a variance reduction gain objective. The discriminative

odel used to accept or reject candidates is a sliding-window de-

ector based on a two level cascade of Random Forest. It is trained
ndependently of the Regression Forest and employs Haar features

ith multi-scale window sizes. 

.2.2. Random forest on superpixels 

As a form of initialization, we alternatively employ a previ-

usly proposed method based on random forest (RF) classification

 Farag et al., 2014; Roth et al., 2015 ) using both hand-crafted and

eep CNN derived image features to compute a candidate bound-

ng box regions. We only operate the RF labeling at a low probabil-

ty threshold of > 0.5 which is sufficient to reject the vast amount

f non-pancreas from the CT images. This initial candidate gener-

tion is sufficient to extract bounding box regions that nearly sur-

ound the pancreases completely in all patient cases with ∼ 97%

ecall. All candidate regions are computed during the testing phase

f cross-validation (CV) as in Roth et al. (2015) . As we will see

ext, candidate generation can be done even more efficiently by

sing the same HNN architectures, which are based on convolu-

ional neural networks. The technical details of HNNs were de-

cribed in Section 2.1 . 

.2.3. Multi-view aggregated HNNs 

Alternatively to the candidate region generation process de-

cribed in Section 2.2.2 that uses hybrid deep and non-deep learn-

ng techniques, we employ HNN-I (interior, see Section 2.1 ) as a

uilding block for pancreas localization, inspired by the effective-

ess of HNN being able to capture the complex pancreas appear-

nce in CT images ( Roth et al., 2016a ). This enables us to drastically

iscard large negative volumes of the CT scan, while operating

NN-I on a conservative probability threshold of > = 0.5 that re-

ains high sensitivity/recall ( > 99%). The constant balancing weight

n β during training HNN-I is critical in this step since the high

ajority of CT slices have empty pancreas appearance and are in-

eed included for effective training of HNN-I models, in order to

uccessfully suppress the pancreas probability values from appear-

ng in background. Furthermore, we perform a largest connected-

omponent analysis to remove outlier “blobs” of high probabilities.

o get rid of small incorrect connections between high-probability

lobs, we first perform an erosion step with radius of 1 voxel, and

hen select the largest connected-component, and subsequently di-

ate the region again ( Fig. 4 ). HNN-I models are trained in axial,

oronal, and sagittal planes in order to make use of the multi-view

epresentation of 3D image context. Empirically, we found a max-

ooling operation across the 3D models to give the highest sen-

itivity/recall while still being sufficient to reject the vast amount

f non-pancreas from the CT images (see Table 2 ). One illustrative

xample is demonstrated in Fig. 5 . This initial candidate genera-

ion is sufficient to extract bounding box regions that completely
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surround the pancreases with nearly 100% recall. All candidate re-

gions are computed during the testing phase of cross-validation

(CV) with the same split as in Roth et al. (2015) . Note that this

candidate region proposal is a crucial step for further processing.

It removes “easy” non-pancreas tissue from further analysis and

allows HNN-I and HNN-B to focus on the more difficult distinction

of pancreas versus its surrounding tissue. The fact that we can use

exactly the same HNN model architecture for both stages though

is noteworthy. 

2.3. Pancreas segmentation 

With pancreas localized, the next step is to produce a reliable

segmentation. Our segmentation pipeline consists of three steps.

We first use HNN probability maps to generate mid-level bound-

ary and interior cues. These are then used to produce superpixels,

which are then aggregated together into a final segmentation using

RF classification. 

2.3.1. Combining mid-level cues via HNNs 

We now show that organ segmentation can benefit from mul-

tiple mid-level cues, like organ interior and boundary predictions.

We investigate deep-learning based approaches to independently

learn the pancreas’ interior and boundary mid-level cues. Com-

bining both cues via learned spatial aggregation can elevate the

overall performance of this semantic segmentation system. Organ

boundaries are a major mid-level cue for defining and delineating

the anatomy of interest. It could prove to be essential for accurate

semantic segmentation of an organ. 

2.3.2. Learning organ-specific segmentation proposals 

Multiscale combinatorial grouping (MCG) ( Pont-Tuset et al.,

2017 ) is one of the state-of-the-art methods for generating seg-

mentation object proposals in computer vision. Inside MCG, a

multi-resolution image pyramid is used to perform the hierarchi-

cal segmentation at each scale independently. These hierarchies

are then aligned and combined into a single multi-scale segmen-

tation hierarchy. Last, the combinatorial space of these regions is

explored using an efficient grouping algorithm in order to produce

a ranked list of region proposals ( Pont-Tuset et al., 2017 ). Differ-

ent from other generation image segmentation methods, MCG uti-

lizes the supervisedly learned image boundary cue to better cap-

ture more semantic object-level edges, instead of raw image gra-

dients. We utilize this approach and publicly available code, 4 to

generate organ-specific superpixels based on the learned boundary

predication maps HNN-B . Superpixels are extracted via continu-

ous oriented watershed transform at three different scales, denoted

( ̂  Y 
B 2 
side 

, ̂  Y 
B 3 
side 

, ̂  Y B 
fuse 

) , supervisedly learned by HNN-B . This allows the

computation of a hierarchy of superpixel partitions at each scale,

and merges superpixels across scales, thereby efficiently exploring

their combinatorial space ( Pont-Tuset et al., 2017 ). This allows MCG

to group the merged superpixels toward object proposals. 

The later HNN-B layers and the fused layer are more semanti-

cally coherent at object level than the early ones that are mainly

focusing on low level feature, like edges – thus, this would result

in too many and too finer-scaled superpixel candidates if early lay-

ers are used. In our empirical evaluation, layer 2 and 3 are the

suitable trade-off to capture some mid-level image gradients com-

bined with the more semantic fused layer (see Fig. 6 ). On the

other hand, we find that the first two levels of object MCG pro-

posals are sufficient to achieve ∼ 88% DSC while keeping moderate

numbers of superpixel proposals (see Table 4 and Fig. 7 ). The seg-

mentation upper-bound performance is obtained by the optimally
4 https://www.github.com/jponttuset/mcg . 
omputed superpixel labels using their spatial overlapping ratios

gainst the segmentation ground truth map. All merged superpix-

ls S from the first two levels are used for the subsequent spatial

ggregation step. Note that HNN-B can only be trained using ax-

al slices where the manual annotation was performed. Note that

he pancreas boundary maps in coronal and sagittal views can dis-

lay strong artifacts because the manual annotation was only per-

ormed on axial slices. Hence, we compute the pancreas-specific

uperpixels using only the axial HNN-B . 

Note that superpixels obtained from unsupervised image cues

which is the normal process on generating superpixels or im-

ge regions) are used for pancreas segmentation in an early work

 Farag et al., 2014 ). Furthermore, four different image segmenta-

ion methods are evaluated and compared in Farag et al. (2014) , in-

luding Watersheds ( Vincent and Soille, 1991 ), SLIC ( Achanta et al.,

012 ), efficient graph-based partitioning ( Felzenszwalb and Hut-

enlocher, 2004 ) and Entropy rate ( Liu et al., 2011 ). Assuming

hat the pancreas segmentation ground-truth masks are known

s an “Oracle”, we can assign the optimal labels for superpix-

ls to compute the upper-bounded pancreas segmentation re-

ults. Based on the AVGDIST (average surface distance) metric on

omparing segmentation results, the optimal performance of the

LIC ( Achanta et al., 2012 ) generated superpixels are 1.06 mm,

nd AVGDIST = 1.69 mm for Felzenszwalb and Huttenlocher (2004) .

rom Table 4 , our organ-specific supervisedly trained superpix-

ls or segmentation proposals have the upper-bound segmenta-

ion limit at AVGDIST = 0.16 mm which is significantly smaller than

.06 mm ( Achanta et al., 2012 ) or 1.69 mm ( Felzenszwalb and Hut-

enlocher, 2004 ). This observation clearly demonstrates the perfor-

ance benefit of employing the supervised boundary cues (en-

oded by HNN-B ) into the procedure of image superpixel gener-

tion. 

.3.3. Spatial aggregation with random forest 

We use the superpixel set S generated previously to extract

eatures for spatial aggregation via random forest classification. 5 

ithin any superpixel s ∈ S we compute simple statistics includ-

ng the 1st–4th order moments (mean, variance, skewness, kurto-

is), and 8 percentiles [20% , 30% , . . . , 90%] on the CT intensities, and

ulti-view HNN-I s and HNN-B responses. Additionally, we com-

ute the mean x, y , and z coordinates normalized by the range of

he 3D candidate region ( Section 2.2.3 ). This results in 87 features

escribing each superpixel and are used to train a RF classifier on

he training positive or negative superpixels at each round of 4-

old CV. Empirically, we find 50 trees to be sufficient to model our

eature set. A final 3D pancreas segmentation is simply obtained

y stacking each slice prediction back into the original CT volume

pace. No further post-processing is employed. 

This complete pancreas segmentation model is denoted as

NN-RF . Note that this model differs from the model employed

n Roth et al. (2016a) in that it aggregates information across all

hree orthogonal planes of the images and not just the axial plane

s in Roth et al. (2016a) . 

. Experimental results 

.1. Data 

Manual tracings of the pancreas for 82 contrast-enhanced ab-

ominal CT volumes are provided by a publicly available dataset 6 

 Roth et al., 2015 ), for the ease of comparison. Our experiments

re conducted on random splits of 82 patients into four folds of
5 Using MATLAB’s TreeBagger() class. 
6 https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU . 

https://www.github.com/jponttuset/mcg
https://doi.org/10.7937/K9/TCIA.2016.tNB1kqBU
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Fig. 7. Multiscale combinatorial grouping (MCG) ( Pont-Tuset et al., 2017 ) on three different scales of learned boundary predication maps from HNN-B : ˆ Y B 2 
side 

, ˆ Y B 3 
side 

, and ˆ Y B 
fuse 

using the original CT image on far left as input (with ground truth delineation of pancreas in red). MCG computes superpixels at each scale and produces a set of merged 

superpixel-based object proposals. We only visualize the boundary probabilities whose values are greater than .10. From this illustrative example, the boundary maps from all 

three HNN-B levels are needed and combined to produce a hierarchy of MCG superpixels that achieve high recalls on preserving the pancreas boundaries. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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0, 20, 21, 21 patients, respectively. In each round of 4-fold cross-

alidation (CV-4), we employ three folds of data as training of both

egmentation cascades, and the left fold for testing. This means

hat each patient case is exactly seen and validated once in testing

of total 4 rounds). CV-4 is used throughout in this section, unless

therwise mentioned. 

.2. Training 

The HNN architecture and hyper parameters like learning rates

 lr ) remain fixed for all models used in this work. We fine-tune

rom the initial models (VGGnet or BSDS500) with a relatively

mall lr = 1 e − 6 using a stepwise weight decay by a factor 10 for

very 10,0 0 0 iterations as suggested by Xie and Tu (2015) . Train-

ng is stopped at 10 0,0 0 0 iterations over the training image slices.

raining time on a NVIDIA TITAN X GPU card took around 9–12 h

or all models. In testing, the runtime is in the order of 2–3 min

or each case applying the cascaded HNN-I models. HNN-RF pro-

essing adds another 5 minutes of processing time. Our implemen-

ation and models are available for download. 7 

.3. Evaluation 

We perform extensive quantitative evaluation on different con-

gurations of our method and compare to the previous state-of-

he-art work with in-depth analysis. 

.3.1. Localization 

From our empirical study, the candidate region bounding box

eneration based on multi-view max-pooled HNN-I s ( Section 2.2.3 )

r previous hybrid methods ( Section 2.2.2 ( Farag et al., 2014 ))

orks comparably in terms of addressing the requirement to pro-

uce spatially-truncated 3D regions that maximally cover the pan-

reas in the pixel-to-pixel level and reject as much as possible

he background spaces. An average reduction of absolute volume

f 90.36% (range [80.45%–96.26%]) between CT scan and candi-

ate bounding box is achieved during this step, while keeping a

ean recall of 99.93%, ranging [94.54%–10 0.0 0%]. Table 1 shows

he test performance of pancreas localization and bounding box

rediction using regression forests in DSC and average Euclidean

istance against the gold standard bounding boxes. The distance

rrors are significantly lower for our proposed prediction scheme

ith p < 0.001 (Wilcoxon signed rank test). As illustrated in Fig. 9 ,

egression forest based localization generates 16 out of 82 bound-

ng boxes that lie below 60% in the pixel-to-pixel recall against the
7 https://github.com/rsummers11/CADLab/tree/master/panreas _ hnn . 

r  

T  

w  
round-truth pancreas masks. Nevertheless we obtain nearly 100%

ecall for all scans (except for two cases ≥ 94.54%) through the

ulti-view max-pooled HNN-I s. An example of detected pancreas

an be seen in Fig. 8 . 

.3.2. HNN spatial aggregation for pancreas segmentation 

The interior HNN models trained on the axial (AX), coronal

CO) or sagittal (SA) CT images in Section 2.2.3 can be straight-

orwardly used to generate pancreas segmentation masks. We ex-

loit different spatial aggregation or pooling functions on the

X, CO, and SA viewed HNN-I probability maps, denoted as AX,

O, SA (any single view HNN-I probability map simply used);

ean(AX,CO), mean(AX,SA), mean(CO,SA) and mean(AX,CO,SA) 

element-wise mean of two or three view HNN-I probabil-

ty maps); max(AX,CO,SA) (element-wise maximum of three

iew HNN-I probability maps); and finally meanmax(AX,CO,SA) 

element-wise mean of the maximal two scores from three view

NN-I probability maps). After the optimal thresholding calibrated

sing the training folds on these pooled HNN-I maps, the re-

ulting binary segmentation masks are further refined by 3D

onnected component process and simple morphological opera-

ions (as in Section 2.2.3 ). Table 2 demonstrates the DSC pan-

reas segmentation accuracy performance by investigating differ-

nt spatial aggregation functions. We observe that the element-

ise multi-view (mean or max) pooling operations on HNN-I prob-

bilities maps generally outperform their single view counterparts.

ax(AX,CO,SA) performs slightly better than mean(AX,CO,SA) . The

onfiguration of meanmax(AX,CO,SA) produces the most superior

erformance in mean DSC which may behave as a robust fusion

unction by rejecting the smallest probability value and averaging

he remained two HNN-I scores per pixel location. After the pan-

reas localization stage, we train a new set of multi-view HNN-I s

ith the spatially truncated scales and extents. This serves a de-

irable “Zoom Better to See Clearer” effect for deep neural net-

ork segmentation models ( Xia et al., 2016 ) where cascaded HNN-

 s only focus on discriminating or parsing the remained organ can-

idate regions. Similarly, DSC [%] pancreas segmentation accuracy

esults of various spatial aggregation or pooling functions on AX,

O, and SA viewed HNN-I probability maps (trained in the second

ascaded stage) are shown in Table 3 . We find consistent empiri-

al observations as above when comparing multi-view HNN pool-

ng operations. The meanmax(AX,CO,SA) operation again reports

he best mean DSC performance at 81.14% which is increased sig-

ificantly from 76.79% in Table 2 with p < 0.001 (Wilcoxon signed

ank test). We denote this system configuration as HNN meanmax .

his result validates our two staged pancreas segmentation frame-

ork of proposing candidate region generation for organ localiza-

https://github.com/rsummers11/CADLab/tree/master/panreas_hnn
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Fig. 8. An example for comparison of regression forest (RF, a–c) and HNN-I (d–f) for pancreas localization. Green and red boxes are ground truth and detected bounding boxes 

respectively. The green dot denotes the ground truth center. This case demonstrates a case in the 90th percentile in RF localization distance and serves as a representative of 

poorly performing localization. In contrast, HNN-I includes all of the pancreas with nearly 100% recall in this case. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. Histogram plots (Y-Axis) of regression forest based bounding boxes (a) and HNN-I ’s generated bounding boxes (b) in recalls (X-axis) covering the ground-truth 

pancreas masks in 3D. Note that Regression Forest produces 16 out of 82 bounding boxes that lie below 60% in pixel-to-pixel recall while HNN-I produces 100% recalls, 

except for two cases ≥ 94.54%. 



H.R. Roth et al. / Medical Image Analysis 45 (2018) 94–107 103 

Table 1 

Test performance of pancreas localization and bounding box prediction using regression 

forests (RF) in Dice and average Euclidean distance against the gold standard bounding 

boxes, in 4-fold cross validation. The percentages state to the k -percentile for each metric. 

For comparison, the same metrics are shown for the bounding boxes generated by HNN-I 

(as described in Section 2.2.3 ). The p -values for testing significant difference between both 

methods of localization are shown (Wilcoxon signed rank test). Statistically significant im- 

provement is shown in italic with p < 0.05. 

Metric Method Mean Std 10% 50% 90% Min Max p -value 

Dist. RF 14.9 9.4 6.4 11.7 29.3 2.8 48.7 

(mm) HNN-I 9.4 5.2 4.5 8.4 16.0 1.9 27.7 < 0.001 

Dice RF 71.2 10.7 56.2 73.4 83.1 33.1 91.5 

(%) HNN-I 71.5 11.5 56.6 71.5 85.5 38.3 95.2 0.994 

Table 2 

Four-fold cross-validation : DSC [%] pancreas segmentation performance 

of various spatial aggregation functions on AX, CO, and SA viewed HNN-I 

probability maps in the candidate region generation stage (the best results 

in bold ). Performances that are significantly different from AX are shown 

in italic ( p < 0.05, Wilcoxon signed rank test). 

DSC Mean Std Min Max p -value 

AX 73.46 11.63 1.88 85.97 n/a 

CO 70.19 9.81 39.72 83.84 < 0.001 

SA 72.42 11.26 14.00 84.92 0.051 

mean(AX,CO) 74.65 11.21 5.08 86.87 0.002 

mean(AX,SA) 75.08 12.29 2.31 86.97 < 0.001 

mean(CO,SA) 73.70 11.40 18.96 86.64 0.293 

mean(AX,CO,SA) 75.07 12.08 4.26 87.19 < 0.001 

max(AX,CO,SA) 75.67 10.32 16.11 87.65 < 0.001 

meanmax(AX,CO,SA) 76.79 11.07 8.97 88.03 < 0.001 

Table 3 

Four-fold cross-validation : DSC [%] pancreas segmentation performance 

of various spatial aggregation functions on AX, CO, and SA viewed HNN-I 

probability maps in the second cascaded stage (the best results in bold ). 

Performances that are significantly different from AX are shown in italic 

( p < 0.05, Wilcoxon signed rank test). 

DSC Mean Std Min Max p -value 

AX 78.99 7.70 44.25 88.69 n/a 

CO 76.16 8.67 45.29 88.11 < 0.001 

SA 76.53 9.35 40.60 88.34 < 0.001 

mean(AX,CO) 79.02 7.96 42.64 88.82 0.285 

mean(AX,SA) 79.29 8.21 42.32 89.38 0.096 

mean(CO,SA) 77.61 8.92 44.14 89.11 0.057 

mean(AX,CO,SA) 80.40 7.30 45.18 89.11 < 0.001 

max(AX,CO,SA) 80.55 6.89 45.66 89.92 < 0.001 

meanmax(AX,CO,SA) 81.14 7.30 44.69 89.98 < 0.001 
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ion followed by “Zoomed” deep HNN models to refine segmenta-

ion. Table 4 shows the improvement from the meanmax -pooled

NN-I s (i.e., HNN meanmax ) to the HNN-RF based spatial aggrega-

ion, using DSC and average minimum surface-to-surface distance
Table 4 

Four-fold cross-validation : The DSC [%] and ave

(AVGDIST [mm]) performance of Roth et al. (2015

spatial aggregation, and optimally achievable supe

method in bold . 

DSC Roth et al. (2015) Roth et al. (20

Mean 71.42 78.01 

Std 10.11 8.20 

Min 23.99 34.11 

Max 86.29 88.65 

AVGDIST Roth et al. (2015) Roth et al. (20

Mean 1.53 0.60 

Std 1.60 0.55 

Min 0.20 0.15 

Max 10.32 4.37 
AVGDIST). The average DSC is increased from 81.14% to 81.27%,

owever, this improvement is not statistically significantly with

 > 0.05 using Wilcoxon signed rank test. In contrast, using dense

RF (DCRF) optimization ( Chen et al., 2014 ) (with HNN-I as the

nary term and the pairwise term depending on the CT values) as

 means of introducing spatial consistency does not improve upon

NN-I noticeably as shown in Roth et al. (2016a) . Comparing to

he performance of previous state-of-the-art methods ( Roth et al.,

015; 2016a ) at mean DSC scores of 71.4% and 78.01% respectively,

oth variants of HNN meanmax and HNN-RF demonstrate superior

uantitative segmentation accuracy in DSC and AVGDIST metrics.

e have the following two observations. 1, The main performance

ain compared to Roth et al. (2016a) (similar to HNN AX in Table 3 )

s found by the multi-view aggregated HNN pancreas segmen-

ation probability maps (e.g., HNN meanmax ), which also serve in

NN-RF . 2, The new candidate region bounding box generation

ethod ( Section 2.2.3 ) works comparably to the hybrid technique

 Section 2.2.2 ( Farag et al., 2014; Roth et al., 2015; 2016a )) based

n our empirical evaluation. However the proposed pancreas lo-

alization via multi-view max-pooled HNNs greatly simplified our

verall pancreas segmentation system which may also help the

enerality and reproducibility. The variant of HNN meanmax produces

ompetitive segmentation accuracy but merely involves evaluat-

ng two sets of multi-view HNN-I s at two spatial scales: whole

T slices or truncated bounding boxes. There is no need to com-

ute any hand-crafted image features ( Farag et al., 2014 ) or train

ther external machine learning classifiers. As shown in Fig. 9 , the

onventional organ localization framework using regression forest

 Criminisi et al., 2013; Lay et al., 2013 ) does not address well the

urpose of candidate region generation for segmentation where

xtremely high pixel-to-pixel recall is required since it is mainly

esigned for organ detection. In Table 5 , the quantitative pancreas

egmentation performance of two method variants, HNN meanmax ,

NN-RF spatial aggregation, are evaluated using four metrics of

SC (%), Jaccard Index (%) ( Levandowsky and Winter, 1971 ), Haus-

orff distance (HDRFDST [mm]) ( Rockafellar and Wets, 2005 ) and
rage surface-to-surface minimum distance 

) , Roth et al. (2016a) , HNN meanmax , HNN-RF 

rpixel assignments ( italic ). Best performing 

16a) HNN meanmax HNN-RF Opt. 

81.14 81.27 87.67 

7.30 6.27 2.21 

44.69 50.69 81.59 

89.98 88.96 91.71 

16a) HNN meanmax HNN-RF Opt. 

0.43 0.42 0.16 

0.32 0.31 0.04 

0.12 0.14 0.10 

1.88 2.26 0.26 
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Table 5 

Four-fold cross-validation : The quantitative pancreas segmentation performance results of our two method variants, 

HNN meanmax , HNN-RF spatial aggregation, in four metrics of DSC (%), Jaccard Index (%), Hausdorff distance (HDRFDST 

[mm]), and AVGDIST [mm]. Best performing methods are shown in bold . Note that there is no statistical significance 

when comparing the performance by two variants in three measures of DSC, JACARD, and AVGDIST, except for HDRFDIST 

with p < 0.001 (Wilcoxon Signed Rank Test). This indicates that HNN-RF may be more robust than HNN meanmax in the 

worst case scenario. 

DSC Jaccard HDRFDST AVGDIST 

HNN meanmax HNN-RF HNN meanmax HNN-RF HNN meanmax HNN-RF HNN meanmax HNN-RF 

Mean 81.14 81.27 68.82 68.87 22.24 17.71 0.43 0.42 

Std 7.30 6.27 9.27 8.12 13.90 10.40 0.32 0.31 

Median 82.98 82.75 70.92 70.57 18.03 14.88 0.32 0.32 

Min 44.69 50.69 28.78 33.95 5.83 5.20 0.12 0.14 

Max 89.98 88.96 79.52 80.12 79.52 69.14 1.88 2.26 

Fig. 10. Average DSC performance as a function of pancreas probability using HNN meanmax (left) and spatial aggregation via RF (middle) for comparison. Note that the DSC 

performance remains much more stable after RF aggregation with respect to the probability threshold. The percentage of total cases that lie above a certain DSC with RF 

are shown (right): 80% of the cases have a DSC of 78.05%, and 90% of the cases have a DSC of 74.22% and higher. 

Fig. 11. Examples of our HNN-RF pancreas segmentation results (green) comparing with the ground-truth annotation (red). The best performing case (a), two cases with 

DSC scores close to the data set mean (b,c) and the worst case are shown (d). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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AVGDIST [mm]. Note that there is no statistical significance when

comparing the performance of two variants in three measures of

DSC, JACARD, and AVGDIST, except for HDRFDIST with p < 0.001

under Wilcoxon signed rank test. Since Hausdorff distance repre-

sents the maximum deviation between two point sets or surfaces,

this observation indicates that HNN-RF may be more robust than

HNN meanmax in the worst case scenario (see also the more stable

pancreas segmentation behavior of HNN-RF with respect to the

different probability thresholds shown in Fig. 10 ). 

Pancreas segmentation on illustrative patient cases are shown

in Fig. 11 . Furthermore, we applied our trained HNN-I model on

a different CT data set 8 with 30 patients, and achieve a mean

DSC of 62.26% without any re-training on the new data cases,

but if we average the outputs of our 4 HNN-I models from cross-
8 30 training data sets at https://www.synapse.org/#!Synapse:syn3193805/wiki/ 

217789 . 

s  

8  

∼  

2  
alidation, we achieve 65.66% DSC. This demonstrates that HNN-I

ay be generalizable in the cross-dataset evaluation providing fur-

her fine-tuning. Last, we collected an additional dataset of 19 un-

een CT scans using the same patient data protocol ( Roth et al.,

015, 2016a ). Here, HNN meanmax achieves a mean DSC of 81.2%. 

. Discussion 

To the best of our knowledge, our result comprises the state-

f-the-art average DSC in testing folds under 4-fold CV evalua-

ion metric. Strict comparison to other methods (except for Roth

t al., 2015; Roth et al., 2016a ) is not directly possible due to dif-

erent datasets utilized. Our holistic segmentation approach with

ulti-view pooling and spatial aggregation advances the current

tate-of-the-art quantitative performance to an average DSC of

1.27% in testing. Previous notable results for CT images range from

68% to ∼ 78% ( Wolz et al., 2013; Chu et al., 2013; Tong et al.,

015; Okada et al., 2015; Oda et al., 2016 ), all under the “leave-

https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
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Table 6 

Comparison to recent literature on pancreas segmentation in CT imaging under cross- 

validation (CV- n with n folds), leave-one-out-validation (LOOV) or a hard train- 

ing/validation/testing split. We limit this comparison to studies that employed the same 

dataset ( Farag et al., 2017; Zhou et al., 2017 ) or used similar datasets in terms of patient 

numbers ( N ). 

Method N DSC (%) Jaccard (%) Protocol 

Wolz et al. (2012) 100 (CT) 65.5 49.6 LOOV 

Wang et al. (2014b) 100 (CT) 65.5 ± 18.6 – LOOV 

Wolz et al. (2013) 150 (CT) 69.6 ± 16.7 55.5 ± 17.1 LOOV 

Wolz et al. (2013) 50 (CT) 58.2 ± 20.0 43.5 ± 17.8 LOOV 

Chu et al. (2013) 100 (CT) 69.1 ± 15.3 54.6 LOOV 

Tong et al. (2015) 150 (CT) 71.1 ± 14.7 – LOOV 

Oda et al. (2016) 147 (CT) 75.1 ± 15.4 – LOOV 

Karasawa et al. (2017) 150 (CT) 78.5 ± 14.0 66.3 ± 15.5 LOOV 

Roth et al. (2017) 150 (CT) 82.2 ± 10.2 – 281/50/150 

Farag et al. (2014) 80 (CT) 68.8 ± 25.6 57.2 ± 25.4 CV-6 

Farag et al. (2017) 80 (CT) 70.7 ± 13.0 57.9 ± 13.6 CV-6 

Roth et al. (2015) 82 (CT) 71.8 ± 10.7 – CV-4 

Zhou et al. (2017) 82 (CT) 82.4 ± 5.7 – CV-4 

Roth et al. (2017) (same data) 82 (CT) 76.8 ± 9.4 – CV-4 

Cai et al. (2016) 78 (MRI) 76.1 ± 8.7 – CV-3 

Ours ( HNN meanmax ) 82 (CT) 81.14 ± 7.30 68.82 ± 9.27 CV-4 

Ours ( HNN-RF ) 82 (CT) 81.27 ± 6.27 68.87 ± 8.12 CV-4 
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ne-patient-out” (LOO) cross-validation scheme. In particular, DSC

rops from 68% (150 patients) to 58% (50 patients) as reported

n Wolz et al. (2013) . Our methods also perform with the bet-

er statistical stability, i.e., comparing 7.3% or 6.27% versus 18.6%

 Wang et al., 2014c ), 15.3% ( Chu et al., 2013 ) in the standard de-

iation of DSC scores. The minimal DSC values are 44.69% with

NN meanmax and 50.69% for HNN-RF whereas Wang et al. (2014c) ,

hu et al. (2013) , Wolz et al. (2013) and Roth et al. (2015) all report

atient cases with DSC < 10%. Recent work that explores the direct

pplication of 3D convolutional filters with fully convolutional ar-

hitectures also shows promise ( Çiçek et al., 2016; Merkow et al.,

016; Milletari et al., 2016 ). It has to be established whether 2D

r 3D implementations are more suited for certain tasks. There is

ome evidence that deep networks representations with direct 3D

nput suffer from the curse-of-dimensionality and are more prone

o overfitting ( Roth et al., 2016b; Su et al., 2015; 2016 ). In fact,

e directly compare to 3D-U-Net applied in a cascaded fashion

s described in Roth et al. (2017) on the same dataset and can

nly achieve 76.8 ± 9.4 [43.7, 89.4] % Dice score in testing when

raining from scratch using the same 4-fold cross-validation split

see Table 6 ). This means that volumetric object detection might

equire more training data and might suffer from scalability is-

ues. However, proper hyper-parameter tuning of the CNN archi-

ecture and enough training data (including data augmentation)

ight help eliminate these problems. In the mean time, spatial ag-

regation in multiple 2D views (as proposed here) might be a very

fficient (and computationally less expensive) way of diminishing

he curse-of-dimensionality. Furthermore, using 2D views has the

dvantage that networks trained on much larger databases of nat-

ral images (e.g. ImageNet, BSDS500 ) can be used for fine-tuning to

he medical domain. It has been shown that transfer learning is a

iable approach when the medical imaging data set size is limited

 Shin et al., 2016; Tajbakhsh et al., 2016 ). 3D CNN approaches often

dopt padded spatially-local sliding volumes to parse any CT scan,

.g., 96 × 96 × 48 ( Merkow et al., 2016 ), 160 × 160 × 72 ( Dou et al.,

016 ) or 80 × 80 × 80 ( Chen et al., 2016a ), which may cause the

egmentation discontinuity or inconsistency at overlapped window

oundaries. Ensemble of several neural networks trained with ran-

om configuration variations is found to be advantageous compar-

ng a single CNN model in object recognition ( Simonyan and Zis-

erman, 2014b; Krizhevsky et al., 2012; Simonyan and Zisserman,

014a ). Our pancreas segmentation method can be indeed consid-

red as ensembles of multiple correlated HNN models but good
 b  
omplementary information gain since they are trained from or-

hogonal axial, coronal or sagittal CT views. 

Additionally, as studied in Kamnitsas et al. (2017b) , for prob-

ems of segmenting small but variable objects, such as brain le-

ions, micro-brain bleeding, lung nodules and so on, 2D CNN can

e uncertain to train and recognize where 3D CNN may be the

efault choice of CNN architecture. We do not mean that 2D

NNs will always perform better than 3D CNNs but would ar-

ue that 2D CNN approaches, when properly used, serve as valid

nd competitive alternatives. Especially, spatial aggregation of 3D

nformation via multiple-view robust fusion using 2D CNNs per-

orms comparatively well to employing 3D CNNs directly, while

eing substantially easier to train (requiring less patient data) and

omputationally efficient (and less GPU memory intensive). Note

hat the network width (i.e., the convolutional kernel numbers) in

NN is markedly wider than the 3D CNN architecture adopted in

amnitsas et al. (2017b) . The recent work of Roth et al. (2017) ex-

loits cascaded 3D CNNs (fully convolutional architectures imple-

ented via 3D U-Net ( Çiçek et al., 2016 )) for pancreas segmen-

ation and reports a very comparable performance of 82.2 ± 10.2%

SC on a similar data set ( Roth et al., 2015 ), only after hav-

ng to use a much larger training set of > 300 annotated pan-

reas CT scans. As a comparable 2D cascaded CNN approach,

hou et al. (2017) also performs on par (82.4 ± 5.7% DSC) to our

pproach. Cai et al. (2016) reports the pancreas segmentation re-

ult of 76.1 ± 8.7% DSC on 78 MRI pancreas volumes under 3-fold

ross-validation. For a comprehensive comparison to recent litera-

ure on pancreas segmentation, see Table 6 . 

The state-of-the-art reported results for several computer-aided

etection problems are still based on fusing multi-view 2D CNNs

 Roth et al., 2016b; Arindra et al., 2016 ). Last, the segmentation

erformance drop when directly applying the deep models trained

n the public dataset ( Roth et al., 2015 ) to the patient data of

nother medical center indicates the importance of cross-center

nd cross-protocol (i.e., patient recruiting protocols) deep transfer

earning ( Kamnitsas et al., 2017a ). 

. Conclusion 

In conclusion, we present a holistic deep CNN approach for

ancreas localization and segmentation in abdominal CT scans,

xploiting multi-view spatial pooling and combining interior and

oundary mid-level cues. The robust fusion of HNN meanmax ag-
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gregating on interior holistically-nested networks ( HNN-I ) alone

already achieve good performance at DSC of 81.14% ± 7.30% in

4-fold CV. The other method variant HNN-RF incorporates the

organ boundary responses from the HNN-B model and signifi-

cantly improves the worst case pancreas segmentation accuracy

in Hausdorff distance (p < 0.001). The highest reported DSCs of

81.27% ± 6.27% is achieved, at the computational cost of 2–3 min,

not hours as in Wang et al. (2014c) , Chu et al. (2013) and

Wolz et al. (2013) . Because of the data-driven manner of how our

deep learning based approach learns features for organ segmen-

tation, it could be generalizable to other segmentation problems

with large variations such as pathological organs ( Harrison et al.,

2017b ). 
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