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We create our ground-truth bone masks by first assigning
(0,1) labels to supervoxels. A specific GUI displaying su-
pervoxel mesh models overlaid in 3D CT volume rendering
is included to assist with visual assessment. Only ~ 0.1%
of the supervoxels may cross the bone versus non-bone sur-
face boundary. The final bone mask merges all positively
labeled supervoxels and is edited with manual touch-ups on
voxels by means of an interactive graph-cut system. Direct
bone voxel painting based annotation is too time consum-
ing.

We first describe an optional, mean-atlas based proba-
bilistic spatial prior filter to reject non-bone supervoxels.
Our module is computationally efficient and differs widely
from the conventional “atlas — deformable registration —
label fusion” pipeline [9, 2 1]. The atlases are three weighted
8-bit 3D volumes (as shown in Fig. 1), derived from Affin-
ity Propagation (AP) [6] based bone mask clustering and the
volume uniform-scaling and shifting from landmark align-
ment [22, 7]. For a new CT image, simple 3D spatial shift-
ing and uniform rescaling parameters are deterministically
computed. Hence, each atlas can be aligned with the cur-
rent volume. This alignment is both efficient in computa-
tion and rough in registration accuracy. We do not intend
to provide a highly precise registration for the complete set
of bone structures in a full-body or arbitrary field-of-view
CT image, because this task is very difficult for the “testing
in-the-wild” setup (even with high computational resources,
e.g., several hours per volume on a modern desktop).

The current registration methodology works best for
spatially-confined anatomies without substantial articula-
tions or shape variation, such as the brain and the lung. As a
comparative study in the literature [4], the registration based
multi-organ localization has a ~ 30% gross failure rate.
Learning methods work significantly better for such tasks.
The initial atlas-to-volume registration results are noisy but
informative. They are robustly encoded with six descrip-
tive features per supervoxel as spatial prior votes received
by the atlas alignment. Furthermore, results in Table 1 indi-
cate that classification on these voting features trained from
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the (+/-) labeled supervoxels improves performance on the
segmentation task. For a limited FOV target volume, the
atlases (after alignment) can possibly occupy space beyond
its image dimensions. The “outside” parts of registered at-
lases are simply removed or ignored, since no supervoxels
will receive their votes.

1. Soft Spatial Prior

From 57 training volumes, we do the following: 1),
we isotropically resample the corresponding annotated la-
bel mask into a coarse spatial resolution and align the mask
and the image using the centroid position of the T-6 (tho-
racic) vertebra. The resolution unit is patient-specific. It is
set to 1/5 of the T-6 vertebra height, and can be automati-
cally provided when a spine labeling tool (similar to [22, 7])
is available. The T-6 vertebra is chosen because it is located
near the center of the body and appears in full-body scans
with high probability. Other landmarks are also applica-
ble. Hence, the alignment only involves patient-normalized
scaling and shifting and can be computed efficiently. 2),
After mapping the mask volumes into the same coordinate
system, we compute their pairwise affinity matrix A by

1-— DiC@(MZ‘, MJ)
g

Aij = exp(— ) ()
where Dice(M;, M;) is the Dice coefficient between two
normalized bone mask volumes M;, M;. 3), The Affinity
Propagation (AP) algorithm [6] is applied to A in two re-
cursive rounds, in which 17, then 3 clusters are formed. The
cluster size, selected by the AP algorithm, decreases from
17 to 3 for computational efficiency purposes. 4), Finally,
we project the 57 mask volumes M into three coordinate
spaces according to their assignments from clustering. The
resulting atlas volumes M, 1,2,3 receive and add votes from
M’ projections, in order to form 8-bit intensity-valued 3D
volumes after histogram equalization. An atlas example is
shown in Fig. 1 (a,b).

During run-time, an atlas selection procedure is required
for unseen data. We simply register each of the 3 atlases via
spatial shifting and rescaling for an incoming volume. Their
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Figure 1. Spatial prior atlas construction and its influence on supervoxel pruning. (a) one of three atlases in sagittal view; (b) in coronal
view; (c) plot of standardized feature weights in classifier; (d) ROC curve of the trained classifier on validation datasets.
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element-wise dot-products 2172,3 are then computed. We
select the atlas with the maximal value among 7 1,2,3 (anal-
ogous to recovering higher intensity bone voxels). For 57
training volumes, this atlas selection process yields 100%
accuracy. We integrate the spatial prior (SP) in a soft way,
by moving to supervoxel features for classification. Six SP
features per V; are calculated:

e the percentage of voxels having non-zero votes from
registered M,

e the indicated bone volume,

e and the 1st through 4th order moments of M readings
within V;.

As expected, in any supervoxel, the classification method
used to obtain Cy,;,rin section 3 weights the first feature as

the purity of M coverage most significantly. From Fig. 1
(c,d), negative supervoxels occupying ~ 65% of volumes
(among the volumes preserved after voxel thresholding) can
be rejected, without sacrificing volume sensitivity.

Note that if the T-6 vertebra is presented and detected
in a CT image (as the only requirement), this spatial prior
can be directly applied to arbitrary FOV bone segmentation,
with no need for model retraining. In some cases, this will
cause a few sections of the spatial prior template to fall out-
side of the CT scan coordinate system. Fortunately, this will
not affect supervoxel classification. The inner portion of the
spatial template behaves in its normal fashion for supervox-
els to receive their weights, which are encoded as features
for the classification of C,,.;,. For a very rare patient pose
distribution, this averaging model is expected to contribute
less. Our data-driven, mode-seeking clustering procedure
based on the AP algorithm successfully captures the major
modes in the patient pose space of 57 training scans (Refer
to Fig. 1).
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The standalone bone segmentation accuracy of soft spa-
tial prior is far from satisfactory. We incorporate it as an ef-
fective pre-filtering stage (before the main feature computa-
tion and superpixel classification via CRF) to reject super-
voxels early on, in order to maximize both computational
efficiency and overall system performance.

2. Sparse Feature Selection

To further evaluate our sparse feature selection and
weighting optimization (Sec. 3), we compare it with the
well known feature selection method described in [17]. This
method employs minimal-redundancy-maximal-relevance
mutual information based criteria (MRMR). It can be
trained efficiently, and it returns a compact feature set. The
MRMR feature selection results are provided in Fig. 2. We
show MRMR feature weights or coefficients of 26 sorted
features. Both algorithms allow for understanding the rel-
ative weights and highlight the importance of features, in
the joint optimization objectives of classification or feature
selection respectively. By comparing Fig. 2 (a) to Fig. 5
(b) (in the main submission), one can see that both methods
weight intensity features more heavily than the other two
feature groups. Boundary (contrast) features also seem to
be more informative than shape features. This indicates that
both algorithms are consistent. The main difference is that
our feature weights are more balanced, i.e., more evenly dis-
tributed over a certain number of features, than those from
the MRMR feature selection algorithm. The volume fea-
ture also plays a more significant role in our sparse linear
classification of Cj.

2.1. Comparative Analysis on Classifier and Fea-
ture Performance

To evaluate a classifier, training time and test accuracy
are the most important factors, as mentioned in [15]. Train-
ing RBF or linear kernel SVM classifiers using LibSVM
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Figure 2. Results of feature selection by minimal-redundancy-maximal-relevance criterion [17]. (a) MRMR feature weights or coefficients
of 26 sorted features; (b) the plot of accumulated coefficients.
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Figure 3. (a) Plot of validation ROC curve of per-V; count or volume rmim? statistics; using RBF kernel SVM [3] with C' = 100 and kernel
size g = 0.01. (b) ROC curves of per-V; or volume mm? statistics when only 12 boundary statistics features are used.

[3] requires 10 ~ 12 hours on a single workstation. On the
same training dataset, our optimization process in Sec. 4
takes 1 minute. On the other hand, when optimized prop-
erly, the linear classifier can match or outperform nonlinear
classifiers in test accuracy [15, 8]. In our case, we have a
reasonably large dataset of 78,997 training samples. How-
ever, they are not i.i.d. (independently and identically dis-
tributed), but are highly correlated (extracted from 57 train-
ing CT scans). 3D volumetric structures or supervoxels may
also have higher intrinsic dimensions [ 1 3] to be represented.
To avoid the curse-of-dimensionality issue and optimize
generality on unseen data, a constrained linear classification
model can be more desirable (e.g., faster with comparable
or higher accuracy) than nonlinear models. This is more

clear in medical imaging based applications. Our empiri-
cal observation and experimental evaluation coincides with
the recent findings in [15, 8], where linear models achieve
better trade-offs in training time, testing time and testing
accuracy levels.

We compare the classification results of the base
Bayesian linear classifier C;) to those of the linear clas-
sifiers, RBF kernel SVM classifiers and random forest
(TreeBagger() in Matlab), in terms of accuracy and test-
ing speeds. On the validation datasets, C; marginally out-
performs other classifiers (3 ~ 7% higher recall at at 10%
FP rate), and AUC (Area Under Curve) values on the com-
plete range of curves are similar. In practice, only the sensi-
tivity levels at low false positive rates (e.g., at most < 15%)



are problem-relevant. The best performing SVM classifier
uses an RBF kernel with the optimized parameters C' = 100
and kernel size g = 0.01, through grid search on C' and g
and cross-validation. The ROC plot is shown in Fig. 3 (a).
This obtained RBF-SVM has a total of 11,681 nonlinear
support vectors, which will need a significantly longer eval-
uation time (i.e., > 10,000 times) in testing than a single
linear dot-product and sigmoid execution by our model C;.
The testing time requirement for a random forest using 50
trees is also greater than C;’s, but is lesser than that of the
RBF kernel SVM classifier. Thus, the optimized sparse lin-
ear classifier C; may offer better generality than the highly
nonlinear models, especially the nonlinear SVMs recently
used in the winning PASCAL challenge studies [2, I, 5]
(not including the SVM from [15]), in our under-sampled
learning scenario.

Using all three types of supervoxel derived image fea-
tures for training does achieve the best ROC curve, com-
pared to the results that only use individual groups. The
ranks of group importance are Intensity features, Boundary
features and Shape features, in descending order. In Fig. 3
(b), ROC curves of per-V; and volume mm? statistics from
only 12 boundary statistics features are illustrated. Its AUC
values drop from 0.9765 to 0.9190 , unlike the case where
all features are included for sparse training. All features are
normalized to zero mean and unit standard deviation before
training.

3. Zoned Piecewise Linear Classification

We experiment with training zoned classification for CT
body ranges as upper and lower parts (i.e., upper or lower
regions from the vertical position of the center of cervical
vertebra C-6). This forms a piecewise linear classification
architecture, rather than a single linear separation boundary
in feature space. As shown in Fig. 4 (a,c), the volume-wise
validation AUC improves to 0.9924 for C;y and 0.9681 for
Cir. These results indicate that the upper skull and neck
zone can achieve nearly perfect classification results, while
the lower torso and limb zones are harder to classify. Fur-
thermore, interesting observations are found by comparing
the standardized feature weights in Fig. 4 (b,d). In the upper
zone, the intensity feature group mostly dominates the rel-
ative importance in classification. Intensity, volume, shape
and boundary features more evenly contribute to classifi-
cation in the lower zone. This divide-and-conquer scheme
indicates that the discriminative feature distributions of pos-
itive and negative data samples vary spatially. When both
Ciy and Cq, are used instead of C; alone, the AUC value
increases from 0.9765 to 0.9846 in mm? volume statistics.
Though this difference seems subtle, it is significant, as it
can increase recall levels in the low FP range.

4. More Visual Examples & Others

Our method runs in 2 ~ 3 minutes per CT volume, un-
der all tested conditions for data resolution, fields-of-view
and possible pathologies. To the best of our knowledge,
this paper presents the first complete solution for precise
full or arbitrary field-of-view bone masking in 3D CT im-
ages. Previous works focus on segmenting specific bones,
mainly the spine [18, 14, 10, 19], the knees [20], and the hip
[16]. [18] segments only the spine columns (not including
more complexly-shaped vertebra processes) in 20 CT stud-
ies and depends on a spine detection procedure. The tech-
nique used in [14] is evaluated only on thoracic spines for
40 datasets and requires pre-alignment initialization from
the trained deformable model to the testing image data. The
main application of [10] is spine disk detection under an it-
erative geometric constraint in 30 CT volumes, which may
heavily limit its success on scoliosis cases. [14, 10] treat
individual vertebrae or vertebra disks as separate objects to
segment. [16] performs hip segmentation for 12 CT vol-
umes via voxel labeling and graph-cut approaches. [20]
uses 23 CT scans to validate and enhance their bone seg-
mentation technique by shape modeling and matching on
the knees. Our method considers all bone structures as the
single-labeled foreground and all remaining voxels as back-
ground. No statistical shape model based constraints are ap-
plied. Qualitative examples of bone segmentation or mask-
ing in different views are provided in Fig. 5. Finally, two
3D rendering views of a segmented skeleton mask for a pa-
tient with moderate scoliosis are shown in Fig. 6.

Our main quantitative evaluation metric is based on Dice
coefficient as a type of volume overlap ratio between the
pair of ground truth and segmented bone masks. The reason
is as follows. Computing geometry consistent 3D mesh sur-
faces of any full or arbitrary FOV bone mask is non-trivial.
Any degenerate scenario may occur. For instance, if the
cortical bones are perfectly segmented but marrow tissues
are missed (a common situation for the bone removal soft-
ware), the converted 3D bone mesh will contain both exte-
rior (bone vs. non-bone) and interior (cortex vs. marrow)
surfaces. Thus, the final surface-to-surface metrics can be
good while recall and Dice measurements are undesirably
low. Our 137 patient datasets represent a wide variety of
body shapes, body mass indices, pathologies, fields-of-view
and body postures, which may cause severe challenges for
these model based top-down methods [23, 12, 14, 10, 11].
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of standardized feature weights in for C1yy or Cy 1, respectively.
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