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Abstract

In full or arbitrary field-of-view (FOV) 3D CT imaging,
obtaining an accurate per-voxel segmentation for complete
large and small bones remains an unsolved and challeng-
ing problem. The difficulty lies in the notable variation in
appearance and position observed among cortical bones,
marrow and pathologies. To approach this problem, sev-
eral studies have employed active shape models and atlas
models. In this paper, we argue that a bottom-up approach,
defined by classifying and grouping supervoxels, is another
viable technique. Moreover, it can be integrated into a con-
ditional random field (CRF) representation. Our approach
consists of the following steps: first, an input CT volume is
decomposed into supervoxels, in order to ensure very high
bone boundary recall. Supervoxels are generated via a ro-
bust process of conservative region partitioning and recur-
sive region merging. In order to maximize sparsity and clas-
sification efficiency, we use a Bayesian sparse linear clas-
sifier to compute and optimize middle-level image features.
Next, we disambiguate the CRF unary potentials via contex-
tualized optimization by pooling over selective supervoxel
pairs. Finally, we adopt a pairwise support vector machine
(SVM) model to learn the CRF pairwise potential in a fully
supervised manner. We evaluate our method quantitatively
on 137 low-resolution, low-contrast CT volumes with severe
imaging noise, among which various bone pathologies are
represented. Our system proves to be efficient; it achieves
a clinically significant segmentation accuracy level (Dice
Coefficient 98.2%).

1 Introduction
The human skeletal system comprises a multitude of pri-

mary bones (e.g. skull, vertebrae, ribs, pelvis), secondary
bones (e.g. upper and lower limbs, hands) and joints to sup-
port the body’s soft tissue. 3D bone segmentation in CT
images is a prerequisite for masking bone tissue voxels and
later performing quantitative pathological diagnoses. Ex-
amples of important imaging-based diagnostic assessments
include bone mineral density assessment [40], bone lesion

Figure 1. Detailed bone appearance patterns in CT images. Bone
structures are widely distributed in the full body region, unlike
spatially-concentrated organs, such as the heart and the liver.
They also show high inhomogeneity on intensity patterns from cor-
tex to marrow and very different 3D shapes for various bones.

and fracture detection [37], and the analysis of abnormal
shapes caused by ankylosing spondylitis [35, 42]. How-
ever, it is very difficult to obtain an accurate mask for all
bone voxels, from full or arbitrary field-of-view (FOV) 3D
CT images. Different bone structures may belong to a wide
range of body regions, and their complex, inhomogeneous
appearance needs to be precisely modeled. In CT voxel in-
tensity, the bone marrow and other cancerous, spongy bone
structures overlap significantly with other non-bone soft tis-
sues and organs. Hence, simple intensity thresholding is
not sufficient. Furthermore, high intensity “non-bone out-
liers”, such as metal implants, partially tagged stools and
IV-contrasted vessels, can be confused with cortical bones.
Several examples are illustrated in Fig. 1. In practice, one
is not previously aware when such ambiguities occur in a
full-body CT scan. Most previous works have focused on a
specific bone organ, such as the spine [30, 39, 31] or the hip
[31]). To the best of our knowledge, our work is the first
to address 3D bone segmentation in full-body or arbitrary
FOV CT scans.

Recent studies [38, 22] show that the current PET-CT
imaging protocol of applying CT intensity values for atten-
uation correction may degrade the quality of obtained PET
images, due to bone inhomogeneities. As a result, the stan-
dardized uptake values (SUVs) of spine/bone lesions [22]
are considerably underestimated. To compute more accu-
rate SUVs, one may replace the CT numbers of segmented
bone voxels with a single patient-specific (e.g., mean inten-
sity) or generic value. This new protocol has the potential to
effectively correct the previous bias, which leads to the mis-
interpretation of clinical images. In fact, enabling semantic
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bone-aware attenuation correction (AC) for PET-CT imag-
ing is the second primary goal of this work. Nevertheless,
PET-CT scans face many more difficulties than do normal
CT scans. CT volumes from PET-CT are of non-diagnostic
quality and are generated with lower radiation doses. They
present weaker contrast, lower resolution and heavier imag-
ing noise levels. Furthermore, the patient population has
much higher rates of various pathologies (e.g., lesion, tu-
mor, scoliosis, osteoporosis), because PET-CT is used very
late in the clinical imaging diagnosis timeline.

Among the numerous studies on generic organ segmen-
tation, most recent works employ top-down methods: sta-
tistical/active shape model (ASM) [52, 27] for heart/liver
segmentation, and atlas registration label fusion framework
[21, 50] for brain and cardiac segmentation. However, these
methods are not suitable for full-body 3D CT skeleton seg-
mentation problem for the following reasons: 1), The hu-
man skeleton system contains up to 206 bones. It is com-
putationally expensive, if not utterly infeasible, to build a
statistical shape model [52] for each bone, assuming a suf-
ficient number of individually segmented and aligned bone
meshes are given. 2), The methods used in [52, 21, 50] re-
quire the computation of either 3D initialization poses to
align ASM models or 3D dense non-rigid registration fields
to warp atlases to CT images. The bone skeleton is highly
articulated, and upper limb poses are often freely distributed
during scanning. Some bones have extremely complex,
thin, or singular 3D shape parts, which makes them hard to
detect and localize. No prior work has applied a non-rigid
volume registration scheme to full-body or arbitrary FOV
bone skeletons, which have a high degree of anatomical
variability. Furthermore, registration based organ localiza-
tion has a gross failure rate of ∼ 30% [13]. 3), ASM needs
precise organ boundary detection for the 3D surface model
to fit and converge [52, 27]. Bones often spatially correlate
to each other in the skeleton. In other cases, multiple adja-
cent bone surfaces may interact (e.g., successive vertebrae).
Hence, it is difficult to perform high quality bone boundary
delineation, even without considering bone fractures. 4),
Both ASM and atlas-based top-down methods [52, 21, 50]
rely on the validity of statistical models learned from a pop-
ulation of normal patients. It is unclear how to general-
ize and handle pathological cases (studied here) under such
frameworks. 5), Per-voxel classification approaches [16, 5]
are too slow to handle large volumes. They often generate
very noisy class-conditional response maps, requiring non-
trivial spatial regularization/smoothing.

We argue that bottom-up representations, such as those
presented in [14, 10, 6, 44], should be employed, instead of
top-down approaches [52, 21, 50]. The region (i.e., super-
pixel) proposal based techniques have attained the highest
ranks in both the PASCAL semantic segmentation [10, 6]
and detection [44, 17] challenges, even in the era of deep

Figure 2. The system flowchart of 3D bone segmentation in CT.

learning [17, 19]. Defining an object as a flexible, spatial
composite of middle-level image regions [14] (superpixels
in 2D, supervoxels in 3D) provides a good balance. It al-
lows for effectively capturing very large variations in holis-
tic object-level models [52, 21, 50] and better disambiguates
noisy, local image appearance than per-voxel detectors [5].

We provide three major contributions: 1), We present a
bottom-up bone segmentation approach with middle-level
image representation (i.e.,supervoxels) and sparse regional
image features. 2), We propose and exploit three types
of contextualized optimization: a novel soft-weighted bone
spatial prior pruning, selective regional pooling (SRP) to
disambiguate unary CRF energies, and supervised pairwise
SVM based second-order potential learning (adapted from
biological network inference). All components can be in-
tegrated into a CRF representation, in which the supervox-
els represent the graph nodes. 3), We evaluate our system
quantitatively on 137 challenging CT volumes from PET-
CT imaging collected from two hospitals. This is the largest
existing dataset for bone segmentation.

We report accurate 3D bone segmentation results (Dice
score 98.2%, Precision 97.9% and Recall 97.9%) that com-
pare favorably to previous results [39, 31] and to a commer-
cial bone removal software. The Full 3D bone segmentation
system flowchart is provided in Fig. 2.

2 High-recall Region Proposals
Several previous studies describe superpixel generation

using graph partitioning [15, 3, 12] or gradient-ascent-based
techniques [48]. The methods presented in [15, 48] are rel-
atively fast. They have O(NlogN) complexity, where N is
the number of pixels or voxels in the image. The compu-
tational complexities of other methods are too heavy (e.g.,
mean-shift [11]: O(N2), normalized cut [12]: O(N
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2 )) for

3D medical volumes (N = 50 ∼ 120 million voxels). Par-
ticularly, the excellent yet expensive contour and region de-
tector of [3] (used in the winning PASCAL method [10])



is not a viable tool. In our study, we adopt the 3D wa-
tershed algorithm [48], which preserves the semantic bone
surface boundary with good sensitivity (by the enhancement
of p-percentile gradient filtering) and generates significantly
larger, but fewer, supervoxels (SVs) in the non-bone regions
(i.e., background) shown in Fig. 3 (b,c). This partitioning
scheme is due to the lack of complete strong gradient sur-
faces separating soft-tissue and fat into small zones. Con-
sequently, these large background supervoxels can be effec-
tively rejected (i.e. not classified as bone voxels) by simple
volume and mean intensity based thresholding. This greatly
enhances the overall system efficiency. Simple linear itera-
tive clustering (SLIC) [1] is also fast and memory efficient.
However, in our case, it generates too many SVs (∼ 106 ver-
sus 103 [48]), which increase the computational cost of the
later optimization stages. In this paper, we use the publicly
available ITK implementation of MorphologicalWatershed-
ImageFilter( ) [23, 48] with the following modifications and
enhancements.

First, CT volumes are smoothed with Gaussian filters.
Next, we perform a simple ρ-percentile gradient filtering
on the gradient domain where the 3D watershed algorithm
[48] is implemented, in order to fill potential bone sur-
face holes. For each voxel in the gradient image, the
filter value is set to G = max(G0, Gρ). G0 is the
original gradient magnitude, and Gρ is the ρ-percentile
gradient within a local window of (5 × 5 × 5) voxels
(ρ = 85%) centered at G. This filter only runs once,
in order to restrict iterative propagation. To achieve a
high recall value on splitting precisely at bone boundary
surfaces, it is critical to set a low pre-flooding parame-
ter as itk :: MorphologicalWatershedImageF ilter ::
SetLevel(6). This allows us to achieve a mean voxel-level
bone boundary recall value as high as < = 98.2% with-
out ρ-percentile filtering. These parameters are calibrated
in training. We use the same parameter setting in all of our
experiments. In Fig. 3 (b), the breakage of bone boundaries
indicated by a yellow circle (bone osteoporosis) can be cor-
rected by this filtering scheme. For quantitative assessment,
ρ-percentile filtering improves < to 99.5%.

Given the annotated CT volumes (bone voxels labeled as
1, others as 0), the largest supervoxel bone volume V maxb in
mm3 can be counted or calibrated from 57 training datasets.
After this, any supervoxels with a volume ≥ κ × V olmaxb

are eliminated (κ is a small constant set to 3). Supervox-
els with mean intensity ≤ 450 (with respect to soft-tissue
CT intensity values ≥ 700) are also removed. The main
objective of this pruning process is to discard all supervox-
els associated with lung tissue. With this process, > 85%
of absolute volumes inside the scanned 3D CT body region
can be safely excluded from further processing.

Recursive Region/Supervoxel Merging: After parti-
tioning and thresholding the CT volumes, we build a re-

(a) (b) (c)
Figure 3. Examples of supervoxel generation results using ITK
watershed and recursive region merging, without the gradient en-
hancement: (a) the original data volume in sagittal view; (b) a su-
pervoxel label map overlaid on the data volume in the same sagit-
tal view. Yellow and blue circles indicate the breakage of bone
boundaries (thus partial marrow regions are connected with back-
ground in red; (c) supervoxel label map in coronal view.

gion adjacency graph (RAG) and nearest neighbor graph
(NNG) from the remaining supervoxel label maps. RAG
contains the list of all supervoxels sharing spatial bound-
aries. NNG preserves its nearest neighbor selected from
RAG. Information-theoretic measures [9], namely the area-
weighted Bhattacharyya coefficients, are used to compute
the log-negative dissimilarity score between any pair of su-
pervoxels {Vi, Vj}.

S(Vi, Vj) = −min(Ni,Nj)log(
∑
k

√
Hki Hkj ) (1)

, where Ni is the volume normalized voxel number
(8mm3/voxel), Hki is the intensity histogram (binned at
CT numbers of [0, 450, 750, 1250, 1600, 4095]) according
to approximate tissue types of air, different levels of soft tis-
sue, bone, metal impants) for supervoxel Vi, and k ∈ [1, 5]
is the index of the histogram. In each iteration, we choose
the nearest-neighbor pair {Vi, Vj} with the minimal dissim-
ilarity cost to merge (sorted by NNG) and efficiently update
RAG and NNG only for the first-hop neighbors of {Vi, Vj}.
The stopping criteria are the number of remaining super-
voxels ≤ 2000 and the minimum dissimilarity > 1.35, as
estimated by cross validation. Instead of generating the
whole region hierarchy via merging [44], we aim to reduce
the number of supervoxels (after merging) for efficiency
purposes and to eliminate very small or similar segments.
The resulting supervoxels are more likely to contain suffi-
cient spatial supports and to facilitate the computation of
statistically stronger middle-level image features.

3 Bottom-up Parsing & Contextualized Opti-
mization

We first formulate the robust unary potentials to achieve
high accuracy: efficient computation of regional image fea-
tures, sparse linear feature classification and a novel se-



lective regional pooling (SRP) scheme for spatial context
based disambiguation. Then the supervised pairwise SVM
is exploited for the second-order CRF potential learning.
3.1 Regional Image Features

Until the past two years, using hard and soft quantized
dense image descriptors such as SIFT, HOG, pyramid HOG,
and SSIM (self-similarity) and spatially aggregating them
into histograms for superpixels [6, 10] was the main stream
method in the VOC challenge [14]. The 3D extensions of
these descriptors are not trivial for dense volume patch la-
beling. Their discriminative power is unclear for modeling
densely grid-sampled 3D patches in CT images, due to the
wide variety of local image statistics. For example, volu-
metric image patches in bone marrow or soft-tissue classes
are nearly indistinguishable. Due to their computational
complexities, the dense descriptor computing and encoding
schemes may not be able to process a full-body CT volume
under a 2 ∼ 3 minute time limit. Deep Convolutional Neu-
ral Network (CNN) [26] based per-voxel (3D image patch)
bone classification would be too slow, as segmentation in-
curs a high computational cost [36]. Applying a 3D regional
CNN [17, 19] to our dataset is infeasible, due to a lack of
training data and of a good quality pre-trained model for
adaption and fine-tuning. For problems differing from Ima-
geNet classification (with a much smaller variance and scale
but a high accuracy requirement, such as face or pedestrian
detection), deep learning does not necessarily yield the best
results, as observed in [32]. We will leave the extension of
classifying 3D subvolumes via deep CNN [36] for future
work.

Recently, [4] has found that efficient image region fea-
tures are nearly as effective as densely encoded SIFT and
HOG descriptors for object recognition. Image region fea-
tures [2, 29] describe and summarize the voxel intensity,
gradient distributions and shape and size statistics of super-
voxels, and are scale-invariant.

Treating all voxels in a supervoxel Vi as an order-less
distribution, we compute the following features as empirical
statistical measurements per supervoxel.

Intensity Features: mean, median, 25%, 75%-
percentile and the intensity histogram Hk=0∼4

i .
Size/Shape Features: size in metric volume (mm3),

three eigenvalues of the spatial occupancy mass of Vi de-
fined as R1, R2, R3, their ratios R2/R1, R3/R1 and “plate-
ness”, “stickness” and “ballness” features [18].

Boundary Features: 1st through 4th order statistical
moments of three empirical feature distributions: normal-
ized distance {DN (vb)}, normalized gradient {GN (vb)}
and orientation {O(vb)} for all boundary voxels {vb} in Vi.

H is binned at CT numbers [0, 450, 750, 1250,
1600, 4095]), which roughly correspond to the tissue
types of air, mixed, lower-, and upper-range of soft-tissue
and bone. Tissue type binning can produce compact and

representative histograms to capture the supervoxels’ tissue
composition ratios. Likewise, [29] finds that a simple
supervoxel intensity histogram outperforms several other
local texture and intensity descriptors, e.g., LBP and
DAISY [43]. The boundary features are computed:

DN (vb) = ‖[xb, yb, zb]− [x̄, ȳ, z̄]‖ /D (2)

GN (vb) = ‖∇(xb, yb, zb)‖ / G (3)

O(vb) =
∇(xb, yb, zb)

‖∇(xb, yb, zb)‖
◦ [xb, yb, zb]− [x̄, ȳ, z̄]

‖[xb, yb, zb]− [x̄, ȳ, z̄]‖
, (4)

where [xb, yb, zb] records the volumetric coordinates of
boundary voxel vb ∈ Vi, and [x̄, ȳ, z̄] is the centroid lo-
cation of Vi. D is the maximum of ‖[xb, yb, zb]− [x̄, ȳ, z̄]‖
for all {vb} in Vi, and G is the maximum ‖∇(xb, yb, zb)‖
from training. Therefore, DN (vb) and GN (vb) are normal-
ized to values in [0, 1] and are scale- invariant. They mea-
sure implicit shape regularity and boundary gradient con-
trast respectively. O(vb) is the dot-product (∈ [−1,+1]) of
the centroid-to-boundary direction and its local gradient di-
rection, which encodes boundary shape information. Our
boundary features are related to the 2D and 3D ray features
described in [29], which describe irregular shapes but are
more compact and are fully rotation invariant for robustness
(without concatenating dozens of sampling directions as in
[29]). In total, we compute 30 features Xi ∈ R30 per Vi in
O(N) running time, where N is the number of voxels.

3.2 Sparse Linear Unary Classification

The nonlinear support vector machine has performed
better than linear kernels in PASCAL VOC [6, 45], ex-
cept when deep neural features [17] or sophisticated high-
dimensional feature encoding and pooling [41, 20] were in-
corporated in the classification scheme. We present a linear
yet high performing probabilistic classifier. To find the op-
timal linearly weighted decision hyperplane wT that sepa-
rates {Xi} according to the labels {Yi = 0, 1}, the objective
is:

Yi = 1, if wTXi > b; Yi = 0, otherwise, (5)
where b is the bias to be estimated. The decision margin
can be converted to the pseudo-probability of class (Yi = 1)
through the logistic sigmoid function as

p(Xi|w) = φ(wTXi), (6)
where φ(z) = 1/(1 + e−z). The overall data log-likelihood
for all training samples is

logp(X|w) =
∑
Xi

Yip(Xi|w)+(1−Yi)(1−p(Xi|w)). (7)

A zero mean Gaussian prior G(w|0,Σ) is further assumed
for the parameter w, with diagonal covariance matrix Σ =
diag(1/α1, 1/α2, ..., 1/αd) and d = 30. α1, α2, ..., αd are
hyper-parameters that are later used for feature selection as



1/αj → 0. By Bayes’ rule, we can obtain the maximum
a-posterior estimate of w as

ŵMAP = argmax
w

[logp(X|w) + logp(w)], (8)
or

ŵMAP = argmax
w

[
logp(X|w)− wTΣ−1w

2

]
. (9)

Eq. 9 can be solved via an iterative gradient based op-
timization method, such as the Newton-Raphson update,
wt+1 = wt − λH−1g.H is the Hessian matrix, g is the gra-
dient vector and λ is the step length.

The hyper-parameters in Σ can also be optimized by
maximizing the marginal likelihood logp(X|Σ) approxi-
mated by the Taylor series expansion (known as the type-II
maximum likelihood method in Bayesian statistics [34]). A
closed-form solution can be obtained by equating the first
derivative to zero and simplifying the resulting expression.

αj = 1/(ŵ2
j + hjj); j = 1, 2, ..., 30, (10)

where ŵ is the optimal, converged ŵMAP and hjj is the
jth diagonal element in H−1(ŵMAP ,Σ), given the previous
hyper-parameters (all αj are initialized at 1). The overall
optimization scheme has two iteration layers: an inner loop
for optimizing ŵMAP and an outer loop for updating {αj}.
For all αj > 1010, we set ŵj = 0 and remove the jth fea-
ture from the vector Xi, in order to achieve sparseness. This
thresholding scheme is numerically stable for feature spar-
sity optimization. For further details, we refer the reader to
[34]. Note that a Laplace prior [49] may be used to replace
the Gaussian prior (no thresholding is needed) for sparsity.

All X features are first normalized with G(w|0, 1).
Hence, the magnitudes of the standardized coefficients
{ŵj} in the final classifier represent their weight impor-
tance. Directly interpretable feature importance is desirable
for medical diagnosis. (Our classification scheme surpasses
others such as SVM or random forest in this regard). In Fig.
4 (b), four features are eliminated, and four have negligible
weights. Feature priors Σ and weights ŵ are also captured.
Using all three types of features yields the best validation
ROC curve (shown in Fig. 4 (a)), as opposed to using indi-
vidual feature groups. The relative group importance ranks
are Intensity, Boundary and Shape features, in descending
order. Classifier training and testing are both very efficient.
Training on 78997 samples takes less than 1 minute. Once
the regional image features Xi are computed in O(Ni) time,
the classifier evaluation (Eq. 6) requires minimal time due
to its linear sparsity. We denote the learned classifier as C1.

3.3 Disambiguating Unaries by SRP

The classifier C1 attains high accuracy levels. Its ROC
curve on validation in Fig. 4 (a) gives an AUC (Area-under-
Curve) (= 0.9765) , a92.6% recall, and a ∼ 10% false pos-
itive (FP) rate. Nevertheless, the segmentation accuracy is
not yet sufficient for our tasks. Certain portions of bone

supervoxels (e.g., bone marrow: Y=1) cannot be easily dis-
tinguished from some background supervoxels (e.g., soft-
tissue: Y=0), if only visual cues are used. Their appear-
ances, and thus their derived descriptive features, can be
very ambiguous. We propose a spatial selective regional
pooling (SRP) algorithm to disambiguate such regions. Our
main idea is that bone marrow supervoxels are more likely
to have bone SV neighbors with high p(X|C1) scores repre-
sented in the RAG graph than soft-tissue supervoxels.

All supervoxels with p(Xi|C1) ∈ [0.4, 0.6] are consid-
ered to have “high classification uncertainty”. To disam-
biguate them, we feed them into {X’i} to train a second
classifier Cp. The positive (+) training set consists of su-
pervoxel pairs: a bone supervoxel ∈ {X’i} and an adjacent
bone supervoxel (available in its RAG graph built in Sec. 2).
The negative (-) set contains the following pairs: 1), a bone
supervoxel ∈ {X’i} with any of its non-bone neighbors and
2), a non-bone supervoxel ∈ {X’i} with any of its adja-
cent non-bone neighbors. The regional features of paired
supervoxels are concatenated in an ordered fashion to form
a pairwise feature vector χ̄. The feature X with the highest
p(X|C1) score is placed first in χ̄. Their p(·|C1) probabil-
ity values are also added into χ̄, thus χ̄ ∈ R62 to train Cp.
p(·|C1) plays an important role since high-confident bone
supervoxels in the pairs are already indicated in χ̄. After
Cp classification, each X’i receives multiple scores depend-
ing on the dimension of its RAG list. The final bone class
probability is computed:

p(X’i|Cp) =
∑

Xj∈RAG(X’i)

γ(X’i,Xj)p(χ̄( X’i,Xj)|Cp), (11)

where χ̄(X’i,Xj) is the feature vector formed by the pair of
(X’i,Xj), and γ(X’i,Xj) is the ratio of the shared boundary
surface of X’i and Xj divided by all boundary surface area
of X’i . The probability p(X’i|Cp) is a weighted average
of local spatial pooling based on RAG groups, related to
but significantly different from the pooling strategies in [7,
10]. Supervoxels /∈ {X’i} keep their original probabilities
p(Xi|C1). Overall, this forms a shallow cascade decision
tree for learning unary probabilities (Fig. 2). Finally, their
negative log-probability transforms are used as CRF unary
energy terms.

3.4 Pairwise SVM 2nd-Order Potential Learning
Our 3D bone segmentation problem is treated as a bi-

nary (foreground-background) CRF optimization problem
over a graph of supervoxel nodes. Supervoxels are classi-
fied by C1 and Cp as unary CRF terms and regularized by
pairwise constraints. The typical pairwise potential func-
tions are the Potts model or an intensity contrast-sensitive
term [8]. To achieve semantically high bone segmentation
accuracy, we adapted a supervised second-order potential
function learning method using a pairwise support vector
machine (SVM) from a scheme used to predict inter-protein



connections in biological network inference [46, 47]. We
employ it to identify pairs of supervoxels that share bone
and non-bone boundaries, and thus incur a low cost to be
assigned different labels in CRF optimization.

Similar pairs of nodes in the feature space are always
allocated with high costs to be classified under different la-
bels [8].The pairwise potential learning is more critical for
dissimilar pairs: supervoxels are separated at a low cost,
if they are separated by an object-level boundary, and at
a high cost otherwise (e.g., a pair of cortical and marrow
bone supervoxels). Dissimilar supervoxel pairs are defined
as (Vi, Vj) in RAG graphs with S(Vi, Vj) > τ . The constant
τ equals µ({S}) − 2σ({S}), where µ(·) and σ(·) are the
mean and standard deviation of the dissimilarity score (Eq.
1) computed from all adjacent bone and non-bone super-
voxel pairs. Empirically, −2σ({S}) guarantees that most
bone and non-bone pairs can be possibly learned. We la-
bel the positive supervoxel pairs as {bone and non-bone}
pairs and the others (especially cortical-marrow bone pairs)
as negative. Most pairs satisfy S(Vi, Vj) ≤ τ and follow
a contrast-sensitive energy term [8], using χ2 intensity his-
togram distances. Overall, the CRF pairwise potentials are
formulated as a switchable model (see Fig. 2).

The metric learning pairwise kernel (MLPK) for SVM
is employed, as presented in [46]:
K((X1,X2), (X3,X4)) = (K(X1,X3)−K(X1,X4)

−K(X2,X3) +K(X2,X4))2
(12)

or, given Φ(X1) as Hilbert feature mapping,

K((X1,X2), (X3,X4)) = ((Φ(X1)− Φ(X2))T

(Φ(X3)− Φ(X4)))2
. (13)

The pairwise potential function should be symmetric for
undirectional image grids/graphs satisfied by the MLPK
kernel. Just as in Sec. 3.3, Xi is a vector in R31, with
p(·|C1) added. Both linear and Gaussian kernels are evalu-
ated to train the classifier Cv . Finally, for each pair satisfy-
ing S(Vi, Vj) > τ , the supervised pairwise energy term is
−log(p((X′i,X

′
j)|Cv)). The SVM confidence of the classi-

fier Cv is converted into a pseudo-probability by a Sigmoid
function. If trained properly, particular cortical-marrow
bone supervoxel pairs will obtain low probability values
from Cv (as a negative class) but high energy penalties to
be split in the CRF. CRFs with higher order cliques, hier-
archical CRFs [6, 25] or holistic context [51, 33] will be
investigated in future work.

4 Experiments & Discussion
Data: 137 CT volumes in PET-CT are collected from

two hospitals in Europe and the US with low voltage and
dose protocols. They are randomly separated into sets of 57
and 80 scans for training and validation respectively. The
in-slice resolution range is 1.2 − 2.0 mm, and the inter-
slice resolution is Rz ∈ [1.5, 5mm]. The majority of im-

(a) (b)
Figure 4. Plots of linear classification on supervoxels: (a) vali-
dation ROC curves of per-Vi or volume mm3 statistics; (b) stan-
dardized coefficients of selected features.

ages are full-body scans, and the remaining 26 are skull
or thoracic scans. 8 pediatric scans are present, and the
remainder are adult scans. All volumes are resampled as
[2mm, 2mm,max(2mm,Rz)] in [x, y, z] coordinates.

Implementation Details: Our full system runs under
2 ∼ 3 minutes per 3D CT volume. Based on the anno-
tated ground-truth, the bone volume statistics (mean, std)
are 3.58±0.86 liters. After the volume thresholding in Sec.
2, there are on average 8.17 ± 2.28 liters of CT volume re-
maining. Our quantitative evaluation only counts these re-
maining 193, 618 supervoxels in 137 CT scans. Using the
middle-level feature optimization in Sec. 3, the AUC of C1

ROC in validation is 0.9765 (i.e., 92.6% recall at 10% FP
rate or the precision of 0.8789). By comparing (a,c ) in Fig.
4, one can see the advantage of fusing multiple channels of
features over using only the boundary features. We com-
pare this result (obtained by C1) to the results obtained by
using SVM with linear kernels and RBF kernels and random
forest (TreeBagger() in Matlab). On the validation datasets,
C1 slightly outperforms other classifiers (3 ∼ 7% higher re-
call at at 10% FP rate) with higher computational efficiency.
We use C1 in an under-sampled learning scenario and note
that our classifier improves generalization for the segmen-
tation problem. We also propose learning a probabilistic
spatial prior model via a sparse linear classifier (Cprior to
remove non-bone voxels prior to computing and optimiz-
ing CRF appearance features. Due to space restrictions, we
have placed the description of this method in the supple-
mentary material section.

Zoned Piecewise Linear Classification: We test the
zoned classification scheme by dividing the CT body range
into three regions: R1: head, neck, and arms above the
cervical vertebra C-6; R2: torso above the sacrum; R3:
pelvis and legs below the sacrum, or two zones: R1 and
R2+R3. We train a separate linear classifier in each zone. In
the divide-and-conquer sense, zoned processing provides an
overall piecewise linear classification framework. Empiri-
cally, the two-zoned approach yields a slightly better ROC
curve than the three-zoned or one-zoned settings. The val-
idation AUC increases to 0.9846 when C1 is replaced by
C1U and C1L. These results occur, as R1 has the dens-



(a) (b)

(c) (d)

(e) (f)
Figure 5. Bone segmentation examples in sagittal view: (a,c,e,f)
illustrate results obtained by our method in four CT scans, and
(b,d) show results generated by a bone-removal commercial soft-
ware. The images in b) and d) are identical to those in a) and c)
respectively. The bone segmentation masks in (c,d) include the pa-
tient’s hand wrist (very flexible, fine bone structure). Several bone
pathologies are observable, such as degenerative disc disease, os-
teoarthritis, spinal stenosis (a,b,e), and scoliosis (f).

est (and thus brightest in CT) bones in the skull and upper
vertebral bodies. This causes C1U and C1L to weight X
features differently. Sparse spine landmark detection and
labeling are generally available but are optional. Without
spine labeling, our workflow runs with only the unary and
pairwise classifiers of [C1, Cp, Cv] and graph-cut as the
base system. Adding selective pairwise pooling Cp to [C1,
Cv] increases the Dice coefficient by ∼ 2.5%. We sum-
marize the primary approach using piecewise linear classi-
fication (Cprior, C1, C1U , C1L and Cp) with added refine-
ments Cv and graph-cut. The precision and recall results
of different system configurations are reported in Table 1.
Cprior does not influence sensitivity much but improves the

precision scores from Base to Base+, and from Base++ to
Full. Zoned piecewise linear classification (C1U and C1L)
in Base++ only outperforms C1 in Base.

Quantitative Evaluation & Comparison: Previous
bone segmentation work focuses on specific bone cate-
gories, e.g., the spine [39, 30] and the hip [31]. Our method
is directly targeted to the full-body skeleton in any volu-
metric images. Since it requires no 3D mesh based sta-
tistical shape models, the mesh surface-to-surface distance
metric [30] on segmentation accuracy measurement is not
applicable. Instead, we compare our results with those
from [39, 31], which use overlapping precision, recall and
Dice coefficients between the computed and ground-truth
3D bone masks. For our two targeted applications, namely
bone pathology detection and attenuation correction, vol-
umetric segmentation accuracy is more meaningful than
surface-distance error metrics, such as the Hausdorff dis-
tance. [39] tackles spine column segmentation using 20 CT
scans, and [31] employs 12 CT volumes on hip segmen-
tation via voxel labeling and graph-cut [8]. The available
full-body solution is a commercial bone-removal software
(BRS) from MeVisLab that relies on fuzzy voxel intensity
thresholding and region growing, and thus severely under-
segments the vertebra body and bone marrow (∼ 60% over-
all sensitivity). Our method significantly outperforms the
techniques from all three previous works in segmentation
accuracy. (We do not have access to the data in [39, 31], but
we evaluate BRS on our datasets). The reader may confirm
this by referring to Table 1 and may also compare figures
(a,c) to figures (b,d) in Fig. 5. Classifying 2D, 2.5D (RGB-
D), and 3D regional candidates (supervoxels in this case)
using middle-level image features can yield signicantly bet-
ter results than per-pixel/voxel based MRF and CRF meth-
ods [2].

A major source of error is that ITK 3D-watershed sur-
faces are not always [48, 23] well-aligned with the ground-
truth boundary. This may be addressed by running a fast
narrow-band level-set surface evolution [24] to locally op-
timize the boundary. Also, large calcified vessel lesions re-
siding close to bone structures (e.g., aorta near spine) are
sometimes inaccurately segmented. Qualitative examples
of bone segmentation in different views are shown in Fig 6.

5 Conclusion
In this paper, we present an efficient bottom-up approach

for accurate bone segmentation in challenging 3D CT im-
ages. Our method exploits the roles of high boundary-
recall regions, middle-level image features and CRF con-
textualized parsing and optimization. The main applica-
tions of this method are usage as a prerequisite segmen-
tation step for full-body bone pathology diagnosis and se-
mantic bone-aware PET-CT attenuation correction (to make
new provisional imaging protocols possible in the future).
Our method is applicable for bottom-up abdomen CT organ



Unary-1 Unary-2 Base Base+ Base++ Full Spine [39] Hip [31] BRS
Precision 92.6% 94.3% 96.7% 98.1% 95.3% 98.6% – – 93.5%

Recall 87.9% 90.4% 92.8% 92.8% 97.9% 97.9% – 73.1− 86.4% 57.2%
Dice 90.2% 92.3% 94.7% 95.4% 96.6% 98.2% 93.4% 65− 92% 71.0%

Table 1. Precisions (1st row), recalls (2nd row) and Dice coefficients under different algorithm configuration settings and other methods
[39, 31], including a bone-removal software (BRS). Unary-1: only C1 is used; Unary-2: two unary energy terms, (C1U and C1L), are
used; Base+: Base + Cprior; Base++ : Base with C1 replaced by C1U and C1L. [31] achieves sensitivities of 73.1 − 86.4% and Dice
coefficients of 65 − 92% for Fibrotic, Trabecular and Cortical bone tissue voxels. We have no access to data in [39, 31], but the BRS is
evaluated on our datasets.

(a) (b) (C)

(d) (e) (f)

(g) (h) (i)
Figure 6. Qualitative examples of skeleton masking in different views, field-of -views (FOV) and body postures. (a,b,c): sagittal views of
typical full-body, head-to-toe and thoracic FOVs are presented; (d,e,f): coronal views illustrate different arm poses, (f): this example yields
a slightly lower recall due to severe metal artifacts/implants on vertebral bodies; (g,h,i): axial views. Images (g,i) demonstrate accurate
segmentation over vertebral diseases; (h) shows an unusual body pose with the hands in the front of torso.

and pathology segmentation due to its representation flexi-
bility. Different supervoxel generation schemes (e.g., SLIC,
Entropy-Rate Clustering [1, 28] preserving soft-tissue organ
boundaries) may be necessary.
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