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1 Introduction

To segment spinal canals is desirable in many studies because it facilitates analysis,
diagnosis, and therapy planning related to spines. Segmentation of spinal canal pro-
vides helpful references to parcellate other anatomical structures and contributes to
the understandings of full-body scans essentially [1]. Given spinal canal, it is much
easier to delineate spinal cord, which is vulnerable to dosage tolerance and crucial
for radiotherapy [2]. More previous works on spinal canal/cord focus on MR images,
partly due to the better capability of MRI in rendering soft tissues. However, in this
paper, we present an automatic method to segment spinal canals in low-resolution,
low-contrast CT images. In particular, our highly diverse datasets are acquired from
the CT channel in PET-CT and on pathological subjects. They are collected from
eight different sites and vary significantly in Field-of-View (FOV), resolution, SNR,
pathology, etc. Sagittal views of two typical datasets with different FOVs are shown
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in Fig. 1(a) and (c), respectively. The coronal plane of another patient, whose spine
twists due to diseases, is also provided in Fig. 1(b). High variation and limited qual-
ity of the datasets have incurred additional difficulty in segmenting spinal canals.

Most spinal canal segmentation methods in the literature are semi-automatic
[3, 4, 5], which require manual initializations or interactions. Archip et al. [2]
present a fully automatic pipeline by parsing objects in a recursive manner. Specifi-
cally, body con-tour and bones are extracted first. Then region growing is employed
to segment spinal canal on each slice independently. When the boundary of spinal
canal is relatively weak as shown in top-right of Fig. 1(c), this approach does not
suffice and thus Snakes [6] is used to incorporate segmentation results from neigh-
boring slices. Fol-lowing similar top-down parcellation strategy, [7] uses watershed
and graph search to segment spinal canals. However, this top-down parcellation
depends on locating the spine column first to provide rough but important spatial
reference, which can be nevertheless non-trivial.

Interactive segmentation has also developed rapidly and drawn many successes
in past decades. By allowing users to define initial seeds, the interactive mechanism
is able to understand image content better and generate improved segmentation re-
sults in the end. We refer readers to [8] for a comprehensive survey of interactive
segmentation methods. Among them, random walks (RW) [9] has been widely ap-
plied in various studies. RW asks users to specify seeding voxels of different labels,
and then assigns labels to non-seeding voxels by embedding the image into a graph
and utilizing intensity similarity between voxels. Users can edit the placement of
seeds in order to acquire more satisfactory results.

In this paper, we adapt the idea of interactive segmentation to form a fully auto-
matic approach that segments spinal canals from CT images. Different from man-
ually editing seeds in the interactive mode, our method refines the topology of the
spinal canal and improves segmentation in the automatic and iterative manner. To
start the automatic pipeline, we identify voxels that are inside the spinal canal ac-
cording to their appearance features [10]. For convenience, we will denote the voxels
inside the spinal canal as foreground, and background otherwise. Then the detected
seeds are input to RW and produce the segmentation of foreground/background.
Based on the tentative segmentation, we extract and further refine the topology of
the spinal canal by considering both geometry and appearance constraints. Seeds
are adjusted accordingly and fed back to RW for better segmentation. By iteratively
applying this scheme, we are able to cascade several RW solvers and build a highly
reliable method to segment spinal canals from CT images, even under challenging
conditions.

Our method and its bottom-up design, significantly different from the top-down
parcellation in other solutions, utilize both population-based appearance informa-
tion and subject-specific geometry model. With limited training subjects, we are
able to locate enough seeding voxels to initialize segmentation and iteratively im-
prove the results by learning spinal canal topologies that vary significantly across
patients. We will detail our method in Section 2, and show experimental results in
Section 3.
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2 Method

We treat segmenting spinal canal as a binary segmentation problem. Let p, denote
the probability of the voxel x being foreground (inside spinal canal) after voxel clas-
sification and p, for background, respectively. In general, we have p, + p, = 1 after
normalization. The binary segmentation can be acquired by applying a threshold to
px. Although shapes of spinal canals can vary significantly across the population,
they are tubular structures in general. We start from a small set of foreground voxels
with very high classification confidences. These voxels act as positive seeds in RW
to generate conservative segmentation with relatively low sensitivity but also low
false positives (FP). All foreground voxels are assumed to form a continuous and
smooth anatomic topology, which refines the seed points in order to better approxi-
mate the structure of the spinal canal. Hence the sensitivity of the RW segmentation
increases with the new seeds. By iteratively feeding the improved seeds to RW, we
have successfully formed an automatic pipeline that yields satisfactory segmenta-
tion of spinal canals.

2.1 Voxelwise Classification

In order to identify highly reliable foreground voxels as positive seeds, we turn to
voxelwise classification via supervised learning. We have manually annotated the
medial lines of spinal canals on 20 CT datasets. Voxels exactly along the medial
lines are sampled as foreground, while background candidates are obtained from
a constant distance away to the medial lines. We further use 3D Haar features as
voxel descriptors. With varying sizes of detection windows, an abundant collection
of Haar features is efficiently computed for each voxel. The probabilistic boosting
tree (PBT) classifiers are then trained with AdaBoost nodes [11]. We have cascaded
multiple PBT classifiers that work in coarse-to-fine resolutions. In this way, we not

(a) (c)

Fig. 1 Examples of datasets in our studies: (a) Sagittal view of restricted FOV near the chest area
only; (b) Coronal view of disease-affected spine; (c) Sagittal view of full-body scan. Two additional
transverse planes show that the spinal canal is not always contoured by bones.
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only speed up the detection in early stage by reducing the number of samples, but
also exploit features benefiting from higher scales of Haar wavelets in coarse resolu-
tion. Note that similar strategy is also successfully applied in other studies [10]. The
well-performing foreground voxel confidence map (as well as the measuring color
map) with respect to a training subject is displayed in Fig. 2(a). However, when
applied to a new testing dataset (e.g., Fig. 2(c)-(d)), the classifiers may suffer from
both false negative (FN) and FP errors. For instance, an FP artifact is highlighted
in Fig. 2(b). Fig. 2(c) shows discontinuity of foreground confidence due to FN er-
rors. Since the purpose here is to preserve highly reliable foreground voxels only
(i.e., Fig. 2(d)), we have adopted a high confidence threshold (> 0.9) empirically to
suppress most FP errors. The detection sensitivity will be subsequently improved as
follows.

2.2 Random Walks

Similar to PBT-based classification, RW also produces voxelwise likelihoods of be-
ing foreground/background [9]. After users have specified foreground/background
seeds, RW departs from a certain non-seeding voxel and calculates its probabilities
to reach foreground and background seeds, as p, and p,, respectively. Usually the
non-seeding voxel x is assigned to foreground if p, > py. In the context of RW, the
image is embedded into a graph where vertices correspond to individual voxels and
edges link neighboring voxels. The weight w,, of the edge ey, which measures the

Fig. 2 Panel (a) shows the confidence map output by voxelwise classification on a training subject;
panels (b)-(d) are for the voxelwise confidences of another festing dataset. Among them, FP errors
and FN errors are highlighted in (b) and (c), respectively. We use a high confidence threshold to
preserve reliable foreground voxels only as in (d).
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similarity between two neighboring voxels x and y, is defined as
wyy =exp (=B (L= 1)), (M

where I, and I, represent intensities at two locations; 8 a positive constant. Assum-
ing segmentation boundaries to be coincident with intensity changes, RW aims to
estimate p, that satisfies to minimize the following energy term

E=Y wy(pc—py)* )

Vexy

To optimize the above is equivalent to solving a Dirichlet problem with boundary
conditions defined by the seeds. Specifically, p, is set to 1 if x is a foreground seed,
and O for background. The calculated p, incorporates spatial information of neigh-
boring voxels, which differs from the independent voxelwise classification (Section
2.1).

The probability of each voxel in RW is associated with the paths from the voxel
to seeds. Hence p, is dependent not only on the weights of the edges forming the
path, but also the length of each path. This potentially undermines RW that is sen-
sitive to the seed locations. In the toy example of Fig. 3(a), there are three vertical
stripes. The intensity of the middle stripe is slightly different and approximates the
spinal canal surrounded by other tissues in CT data. We highlight certain sections of
stripe boundaries in very high intensity to simulate the existence of vertebra, whose
presence can be discontinuous as in Fig. 1(c). Foreground seeds and background
seeds are colored in red and green, respectively. The calculated probability p, in
RW and the binary segmentation (p, > 0.5) are shown. We observe from Fig. 3(c)
that the segmented foreground falls into two segments undesirably. Though increas-
ing the threshold on p, and refining 8 to modify edge weights might improve the
segmentation results, this becomes very ad-hoc. On the other hand, RW provides an
interactive remedy by simply allowing users to place more seeds in proximity to the
desired segmentation boundaries. The few additional seeds in Fig. 3(d) yield better
discrepancy of foreground/background and lead to more satisfactory segmentation
results (Fig. 3(e)-(f)).

2.3 Pipeline of Cascaded Random Walks

As mentioned above, we are able to identify seeds in voxel classification and feed
them to RW for estimating segmentation. The initial segmented spinal canal usually
breaks into several disconnected segments that imply high FN errors. This is because
the initial seeds with high confidences from voxelwise classification are usually not
sufficient to cover everywhere of the spinal canal.

Topology Refinement: To refine and acquire complete segmentation, we in-
troduce the topology constraints of the spinal canal to segmentation. Specifically,
we use the medial line of the spinal canal to represent its topology. After calculat-
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ing all segments of the medial line given the tentative segmentation, we interleave
them into a single connected curve. Fig. 4 illustrates the four sub-steps to refine the
topology of the spinal canal with regard to its medial line. Based on tentative seg-
mentation (including outputs from voxelwise classification), we calculate the me-
dial point of foreground voxels on each transverse slice in Fig. 4(1). The medial
point is defined to have the least sum of distances to all other foreground voxels
on each slice. Assuming that the medial line connects all medial points, we then
connect the medial points into several segments in Fig. 4(2). The medial line may
break into several segments since medial points can be missing. Also certain me-
dial point would be rejected as outlier if it incurs too high curvature to the medial
line. With all computed segments, we interleave them by filling gaps with smooth
virtual segments (as dotted curves) in Fig. 4(3). Each virtual segment c(s) mini-
mizes [ ||V?c(s)||?ds to keep smooth as s € [0, 1] for normalized arc-length. The
stationary solution to the above holds when V#c(s) = 0, and the Cauchy boundary
conditions are defined by both two ends of the virtual segment as well as tangent
directions at the ends. Though the numerical solution is non-unique, we apply the
cubic Bzier curve for fast estimation of the virtual segment. For a certain virtual
segment, we denote its ends as Py and P3. An additional control point Py is placed
so that the direction from Py to Py is identical to the tangent direction at Py. Sim-
ilarly, we can define P, according to P3 and the associated tangent direction. We
further require that the four control points are equally spaced. The virtual segment
is c(s) = (1 —5)3Py+3(1 —5)%sP; +3(1 — 5)s°P, + s°P5.

After predicting the virtual segment in Fig. 4(3), we finally place more virtual
medial points along the virtual segment. Besides the subject-specific geometry con-
straints to keep the virtual segments smooth, we further incorporate appearance cri-
terion in Fig. 4(4). Upon all existing medial points (red dots), we calculate their
intensity mean and the standard deviation (STD). The univariate Gaussian intensity
model allows us to examine whether a new voxel is highly possible to be foreground
given its simple appearance value. In particular, we start from both two ends of each
virtual segment, and admit virtual medial point (purple dot) if its intensity is within
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Fig. 3 With foreground seeds (in red) and background seeds (in green) (a), the calculated probabil-
ities (b) and the corresponding binary segmentation (c) are not satisfactory. However, by manually
placing more seeds (d), the segmentation results (e-f) are improved significantly.
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the single STD range of the intensity model. The process to admit virtual medial
points aborts when a disqualified candidate has been encountered.

Seed Sampling: After the topology of the spinal canal has been refined, we are
able to provide better seeds for RW to use. All points along the refined medial line,
including the newly admitted virtual ones, will act as foreground seeds. Moreover,
we qualify more voxels as foreground seeds if (1) they have been classified as fore-
ground in previous segmentation; (2) their intensities are within the single STD
range of the appearance model introduced above; and (3) they are connected to the
medial line via other foreground seeds. In this way, we have inherited previous seg-
mentation in areas of high confidence, and saved computation since RW can simply
treat them as boundary conditions. Surrounding voxels with high intensities will be
regarded as bones and then counted as the background seeds.

Cascaded Random Walks: By repeating the procedures above, we have cas-
caded several RW solvers in order to generate the final segmentation. The pipeline
will terminate automatically when the topology of the spinal canal, or the length
of the medial line, has become stable. Remaining medial segments that are isolated
from others will then be excluded from the foreground, in that they usually reflect
artifacts especially from legs. During the iterative refinement, we also allow the me-
dial line to grow at its both ends and thus admit more virtual medial points. The
growth can stop automatically at the tail and terminate in the head by limiting the
maximal radial size of the spinal canal. In Fig. 5(a), we show the foreground proba-
bility on four slices of a subject after the first iteration of our method. Improvement
can be observed in Fig. 5(b) that shows the output after the second iteration. The
final probability after the fourth iteration is shown in Fig. 5(c), with the correspond-
ing segmentation in Fig. 5(d). The results above demonstrate that our method can
efficiently utilize the topology of the spinal canal and generate satisfactory segmen-
tation in the final.

Rejected due
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Fig. 4 Four sub-steps in refining the topology of the spinal canal include (1) estimating medial
points; (2) determining medial segments; (3) calculating virtual medial segments (in dotted curves);
and (4) placing more virtual medial points (in purple).
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3 Experimental Result

We have conducted a study on 110 individual images from eight medical sites, as
the largest scale reported in the literature, to verify the capability of our method.
The training data are not used for the sake of testing. Even though the image quality
of our data is low and the appearance variation is extremely high, we successfully
generate good segmentation results on all datasets by our method with a fixed con-
figuration. Sagittal views of segmentation results for 4 randomly selected subjects
are shown in Fig. 6(a)-(d), respectively. In Fig. 6(e)-(g), we also show the segmen-
tation result in 3 coronal slices for the extreme case in Fig. 1(b). This patient is
under influences from severe diseases, which cause an unusual twist to the spine.
However, though the topology of the spinal canal under consideration is abnormal,
our method is still capable to well segment the whole structure. All results above
confirm that our method is robust in dealing with the challenging data.

c ()

Fig. 5 Panels (a)-(c) show foreground probability on 4 consecutive slices of a certain subject output
after the first, second, and the final (fourth) iteration, respectively. The binary segmentation in (d)
is corresponding to the final probability in (c).
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We have further manually annotated 20 datasets for quantitative evaluation. For
the manually delineated parts, the Dice overlapping ratio between the segmenta-
tion of our method and the ground truth reaches 92.791.55%. By visual inspec-
tion, robust and good segmentation results are achieved on all 110 datasets, espe-
cially including many highly pathological cases. Note that to deal with image data
with severe pathologies is not addressed and validated in the previous literature
[2,3,4,5,7].

Our method achieves final segmentation in 2-5 iterations for all datasets, and
typically costs 20-60 seconds per volume depending on the image size. With more
sophisticated RW method that is better designed for editing seeds [12], the speed
performance of our method can be further improved.

Fig. 6 Panels (a)-(d) show segmentation results (in sagittal views) on 4 randomly selected images.
Coronal views of the segmentation results on an extreme case, whose spine twists due to diseases,
are shown in (e)-(g).
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4 Discussion

In this work, an automatic method to segment spinal canals from low-quality CT
images is proposed. With initial seeds provided by PBT-based classification, we
introduce topology constraints into segmentation via RW. Our iterative optimiza-
tion has successfully enhanced the capability of RW in dealing with tubular spinal
canals, in that the boundary conditions can be improved to guarantee better segmen-
tation results. Our large-scale evaluation shows that the proposed method is highly
accurate and robust even if the datasets are very diverse and challenging.
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