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Abstract. Computer aided detection (CAD) systems have emerged as
noninvasive and effective tools, using 3D CT Colonography (CTC) for
early detection of colonic polyps. In this paper, we propose a robust
and automatic polyp prone-supine view matching method, to facilitate
the regular CTC workflow where radiologists need to manually match
the CAD findings in prone and supine CT scans for validation. Apart
from previous colon registration approaches based on global geometric
information [1–4], this paper presents a feature selection and metric dis-
tance learning approach to build a pairwise matching function (where
true pairs of polyp detections have smaller distances than false pairs),
learned using local polyp classification features [5–7]. Thus our process
can seamlessly handle collapsed colon segments or other severe struc-
tural artifacts which often exist in CTC, since only local features are
used, whereas other global geometry dependent methods may become
invalid for collapsed segmentation cases. Our automatic approach is ex-
tensively evaluated using a large multi-site dataset of 195 patient cases
in training and 223 cases for testing. No external examination on the cor-
rectness of colon segmentation topology [2] is needed. The results show
that we achieve significantly superior matching accuracy than previous
methods [1–4], on at least one order-of-magnitude larger CTC datasets.

1 Introduction

Colon cancer is the second leading cause of cancer death in western countries,
but it is one of the most preventable of cancers because doctors can identify
and remove its precursor known as a polyp. Besides the well established fiber-
optic colonoscopy, 3D Computed Tomography Colonography (CTC), or virtual
colonoscopy has emerged as a powerful screening tool for polyp detection and
diagnosis. The research field of computer aided detection (CAD) of colonic polyps
in CTC is highly exploited [5–7]. To enhance polyp findings in collapsed or fluid-
tagged colon segments, and better distinguish polyps from pseudo polyps (e.g.
tagged stools), the current CTC clinical practice is to obtain two scans of a
patient in prone and supine positions, respectively. However colon can move and
deform significantly differently between the prone and supine scans, which makes



the manual registration of polyp findings or colon segments difficult, inaccurate
and time-consuming.

In this paper, we present a novel computerized technique to achieve high per-
formance polyp matching, by supervisedly optimizing a distance metric in the
feature space of polyp classification where true pairs of polyp matches statisti-
cally have smaller distance than false pairs. A polyp instance may be represented
by a variety of local appearance features for classification [5–7], including lo-
cal geometric features, and morphological, shape/intensity and context features.
Since the total union of these features may lead to redundancy, greater computa-
tional and spatial complexity, we first use feature selection method to choose the
features that are most relevant to polyp matching (e.g., the feature difference
variation is minimal between true polyp matches), but least redundant. After
selecting a subset of task-specific features, from the polyp classification feature
pool, we propose an efficient metric learning method to learn a covariance-matrix
boosted Mahalanobis distance to measure the instance differences across views.

Extensive evaluation is executed using a representative, multi-site clinical
database with 195 patient cases in training and 223 cases for testing, containing
106, 118 polyps respectively. We demonstrate superior performance results on
polyp prone-supine view matching, compared with existing work mostly based
on colon centerline/surface registration [1–4]. Note that previous polyp matching
techniques are tested and reported on datasets which are at least one order-of-
magnitude smaller than ours, as 20 [1] (with 20 polyps), 12 [2] (with 12 polyps),
and 39 [3] (with 23 training and 16 testing polyps) patients/cases. This is par-
tially because the pair of completely distended prone-supine colon scans (from
rectum to cecum) is a prerequisite, and preparing topologically correctly seg-
mented colon cases often requires manual editing or interactions [2] and can be
labor-intensive, given a large number of 3D volumes.

2 Materials and Methods

Our approach consists of the following two steps. We first select a subset of fea-
tures from the whole CAD classification feature pool, which is polyp matching-
informative, using Minimum Redundancy Maximum Relevance (MRMR) algo-
rithm [8]. Next, we learn an effective polyp matching distance metric on se-
lected features (i.e., Mahalanobis distance by a positive semidefinite matrix that
weights channels of features differently), in an additive, boosting based optimiza-
tion manner. Fig. 1 summarizes the process diagram.

2.1 Matching-Sensitive Feature Selection

Data & Features: We collected 195 CTC cases (or 390 volumes) with 106
polyps appearing in both views for training; and 223 cases containing 118 polyps
with double appearance for testing, from 8 hospitals in US, Europe and Asia.
Images are acquired using Siemens, GE and Philips scanners with fecal tagging
preparation. Only actionable polyps with diameters ≥ 6mm are considered. Our



Fig. 1. The flow chart of using metric learning to do polyp matching and retrieval.

CAD system builds a tree-structured probabilistic classifier using 96 (morpho-
logical, intensity, texture-based or geometrical) features F = {fi} on 61257
candidates in training dataset. Thus we can first perform a thresholding process
to rule out false positive (FP) candidates with low probability values (ρ of being
polyp). After this, we have ∼ 8 candidates per patient with true positive (TP)
detection sensitivities at 94.2% and 92.9% for training and testing perspectively.
Note that our polyp matching approach is applicable on other CAD systems [5–7]
which usually have a large variety of polyp descriptive features.

Let x1
i be a true polyp instance in one view for a patient and let {x2

j} be

the set of corresponding instances in the other view. Note that the size of {x2
j}

can be larger than one since polyps can appear as two or more instances in
each scan, especially for large polyps. This is called multiple instance problem.
Here 1 or 2 indicates prone or supine view, without loss of generality. We define
the positive (+) instance pairs of instances in two views rooted from the same
unique true polyp, and other pairs as negative (-) (e.g., TP-TP pairs according
to different polyps, TP-FP pairs, and FP-FP pairs). For each original feature f ,
a new “difference-of-feature” variable can be derived as 4f = (f1i − f2j ), which
is expected to be zero or a constant for positive pair population (i.e., tightly
distributed in a statistical sense), or random for negatives.

Based on above motivation, we use feature selection algorithms to find a
subset of S ⊂ F which are more informative on distinguishing true or false
polyp pairs. For its numerical stability, accuracy and formulation simplicity, we
choose Minimum Redundancy Maximum Relevance (MRMR) method [8] though
other feature selection methods are also applicable. For self-contained content,
we review MRMR algorithm as follows. 4f is abbreviated as f , with a slight
abuse of notation. For feature set F = {fi}, its MRMR feature subset S means
that the average mutual information between the feature set S and the class
labels is large while the mutual information between the features in S is small.
The mutual information between feature set S and the class label set y is defined

I(S,y) =
1

m

∑
fi∈S

I(fi,y) (1)

where m is the cardinality of S, I is the mutual information and y represents
the positive or negative {+1;−1} matched pair as defined above. The mutual



information between features in the set S is

I(S) =
1

m2

∑
fi,fj∈S

I(fi, fj). (2)

Then the objective of MRMR can be described as the following function

γ(S,y) = max
S⊂F

I(S,y)− I(S) (3)

The MRMR feature selection is a sequential process. The ith feature f?i can be
chosen, given selected Si−1, according to

f?i = arg max
f∈F−Si−1

I(f,y)− 1

i− 1

∑
fj∈Si−1

I(f, fj)

Then the ith feature will be added to Si−1 to form Si = Si−1 ∪ fi. If γ(Si,y) <
γ(Si−1,y), then Si−1 is the optimal feature subset, and MRMR feature selection
stops. Using the MRMR feature selection method, we obtain 18 features out of
96 features, describing polyp’s shape morphology, segmented size, surface area,
intensity profiles, classification score (“polypness”) and their joint statistics. In
the dimensions of these selected (individual instance appearance-specific) fea-
tures, we will propose a metric learning algorithm for deriving a Mahalanobis
distance to match polyps across prone-supine views.

2.2 Matching by Metric Distance Learning

In this section, we propose a new metric learning method called “MatrixBoost”
to match polyps in prone-supine views, using the 18 matching sensitive polyp
features selected by MRMR. The basic idea is that a good distance metric can
be learned to assign different weights on features, so that low distances are
given for pairs of instances to be matched and high distances for others, in the
feature space. There are a number of ways to design distance metrics [9–11].
Metric learning can be derived from the optimal combination of weak learners
to form a strong learner, based on training data. One type of weak learner is
equivalence constrained, where equivalence constraints are provided for pairs
(xi,xj), each associated with a binary label of ”similar” or ”dissimilar” [9].
Another weak learner representation often used in information retrieval [11] is
the proximity relationship over triplet set T = {(i, j, k)}, meaning that xi is
closer to xj than to xk. Here xi is the feature vector representation for the
polyp instance i. The goal of metric learning is to learn a distance function d
such that d(xi,xj) < d(xi,xk), and

d(xi,xj) = (xi − xj)′M(xi − xj) (4)

where ′ is the vector/matrix transpose transformation and M is a positive
semidefinite (PSD) matrix that leads to the Mahalanobis distance metric [9,10].
We follow the Mahalanobis distance metric formulation, but propose to con-
struct the “covariance” matrix M by additively combining weak learners which
are low rank PSD matrices. AdaBoost [12] method is utilized to learn the linear
combination of low rank positive semidefinite (PSD) matrices, as a PSD matrix



Algorithm 1 Algorithm: Metric Learning by MatrixBoost

Input: A set of feature vectors X = [x1 x2 · · · xn],
The triplet set T = {(i, j, k) | xi is closer to xj than to xk}.
Initialize D1((i, j, k)) (usually set to 1/m where m is the total number of triplets).
repeat

Learn the optimal weak hypothesis ht(x,y) : X×X → R according to distribution
Dt.
Choose αt ∈ R.
Update distribution

Dt+1((i, j, k)) =
Dt((i, j, k)) exp(αt(ht(xi,xj)− ht(xi,xk)))

Zt
(5)

where Zt is a normalization factor (chosen so that Dt+1 is a distribution).
until Some convergence criterion is met.
Output the final model H(·, ·) =

∑
t αtht(·, ·).

M preserving the proximity relationships among triplet set T = {(i, j, k)}. The
input to our metric boosting algorithm for training are triplets of instances, with
inequality constraints on distances as defined above.

Build triplets: In training, we select all the instances with classifier score
greater than ρ ≥ βc to build triplets. The classifier score threshold βc is chosen
to make a practically feasible trade-off between detection sensitivity and FP rate
(sensitivity is 0.946, and FP rate per patient is 7.59, pruning obvious negatives).
The retained instances will form the triplets in the following way. For each
true positive (polyp) instance xi in the prone view of a patient, we find all
the positive instances {xj}nj=1 corresponding to the same polyp and all other
instances (including positives corresponding to different polyps and negatives,
or false positives) {xk}mk=1 in the supine view. Then (i, j, k) will form a triplet,
requiring d(xi,xj) < d(xi,xk). We repeat the same process on each true positive
instance in the supine view to build more triplets, in a similar way. All the triplets
form a triplet set T and we obtained 8646 triplets in total, which will be used
as inputs for our metric learning algorithm to optimize the PSD matrix M .

Learn a PSD matrix using MatrixBoost: Since a PSD matrix can be
Eigen-decomposed as a combination of lower rank matrix, e.g., M = αiUi,
where Ui = uiui

′. The distance between two instances xi and xj is d(xi,xj) =
(xi − xj)′M(xi − xj). The algorithm is to learn a strong learner H(x,y) =
(x − y)′M(x − y), which is a combination of weak learners ht(x,y) = (x −
y)′Ut(x − y), i.e. H(x,y) =

∑
t αtht(x,y), by minimizing the error rate of

triplets violating the distance inequality as below.

ε =
∑

(i,j,k)∈T

D((i, j, k))1(H(xi,xj)−H(xi,xk)), (6)

where D is a probability distribution over T , and 1 is the Heaviside step function
(1(a) = 0 if a < 0, and 1 otherwise). Our proposed MatrixBoost algorithm is



shown in Algorithm 1. This algorithm adapts the merits of the AdaBoost [12]
and the decomposable nature of PSD distance matrix. In the algorithm, the
weak model is ht(x,y) = (x − y)′Ut(x − y) where Ut = utut

′, and the final
hypothesis is H(x,y) = (x− y)′M(x− y) where M =

∑
t αtUt. Note that if M

forms a metric that satisfies the triplet conditions, so does its multiplier. It can
be proven that the training error of the final hypothesis H as defined in (6) is

upper bounded by
∏T
t=1 Zt, i.e.,∑

D((i, j, k))1(H(xi,xj)−H(xi,xk))

≤
∑

D((i, j, k)) exp(H(xi,xj)−H(xi,xk)) , 1x ≤ exp(x)

=
∑

DT+1((i, j, k))
∏T

t=1
Zt =

∏T

t=1
Zt.

αt and ht will be chosen such that the error upper bound
∏T
t=1 Zt will be mini-

mized. Let ht ∈ [0, 1], Zt has the upper bound

Zt ≤ eαt
1− r

2
+ e−αt

1 + r

2
, (7)

where
r =

∑
(i,j,k)∈T

Dt((i, j, k)) (ht(xi,xk)− ht(xi,xj)) . (8)

The right side of (7) can be minimized when αt = ln((1 + r)/(1 − r))/2 which
corresponds to Zt ≤

√
1− r2. Obviously, Zt ≤ 1 and if r > 0, we have αt > 0.

Furthermore, the inequality implies that we can achieve smaller Zt by minimizing
its upper bound

√
1− r2. Hence, a weak learner can be designed to maximize

|r| for a sensible model ht.

max
Ut = utut

′

||ut|| = 1

|
∑

(i,j,k)∈T Dt((i, j, k)) (ht(xi,xk)− ht(xi,xj)) |

subject to ht(x,y) = (x− y)′Ut(x− y)

(9)

Using simple matrix algebraic operations, Eq. (9) can be rewritten as

|ut
′
[∑

(i,j,k)∈T Dt((i, j, k)) ((xi − xk)(xi − xk)′ − (xi − xj)(xi − xj)′)
]
ut|
(10)

The problem of maximizing the objective (10) subject to a normalization
constraint ||ut|| = 1 has a closed-form solution: the optimal ut is the eigenvector
corresponding to the eigenvalue λ, with the largest absolute value, of the matrix∑

(i,j,k)∈T Dt((i, j, k)) ((xi − xk)(xi − xk)′ − (xi − xj)(xi − xj)′) . (11)

Let a = max{||x− y|| | x 6= y,x,y ∈ X} which is a constant for a given set of
data.

0 ≤ ht(x,y) =
(x− y)′utut

′(x− y)

a2
≤ ||x− y||2||ut||2

a2
≤ 1 (12)

In testing, if d(xi,xk) < δ and δ is a distance threshold which can be sta-
tistically calibrated as shown later, we will claim xk is a match of xi and the
confidence pi for xi to be detected as positive (assuming only true positives have
matches) is inverse to the minimum distance, i.e., pi = 1/d(xi,xk). An matched
polyp pair example is shown in Fig. 2.



Fig. 2. An illustrative example of matched polyp pair, in a collapsed colon with back-
ground topological noises (e.g., small intestine) and large deformations in transverse
and ascending colon sections.

3 Experimental Results

For each polyp xi in a given view (prone or supine), the goal of polyp retrieval
is to find its corresponding counterpart in the other view. Using d(xi,xj) in Eq.
(4) with learned M , we sort its k nearest neighbors and check whether there
is a true match within k to trigger a hit. The retrieval rate is defined as the
number of polyps retrieved divided by the total number of query polyps. In
case of multiple instances, any true instance appearing in the top k neighbors
will count the polyp as retrieved at k. The evaluation of retrieval rate versus
the number of nearest neighbors, i.e., k is demonstrated in Fig. 3, for both
training and testing datasets. Fig. 3 shows the superior performance of metric
learning methods (via fusing local polyp appearance features), compared with
the centerline geodesic distance based retrieval, similar to [3,4]. Not all polyps are
retrievable because a small portion of polyps (≤ 7%) only appeared in one view.
For centerline based schemes, > 40% polyps are non-retrievable or can not be
directly handled by [1–4], mainly due to collapsed colon segmentation in at least
one prone or supine volume of 31% training, or 36% testing cases. [13]reports that
∼ 40% volumes have collapsed colon segments in a clinical dataset. Note that, by
normalizing against the polyp retrieval upper bounds (55 ∼ 59% for geometric
and 93 ∼ 94% for metric learning) respectively, in Fig. 3, i.e., assuming all polyps
are matchable, our local features + metric distance learning approach still clearly
has more appealing performances, as 85% versus 62% in training; 80% versus
57% in testing when k = 1.

We also evaluate our MatrixBoost algorithm against other metric learning
methods (Mahalanobis [10], PSDBoost [11], ITML [14], BoostMetric [11] and
COP [9]), using the same selected feature set by MRMR. MatrixBoost dominates
the retrieval rate at the full range of k, with a larger margin in testing dataset.
For example, when k = 2, the testing retrieval rate of our method is 80.51%,
while the best result of all other techniques is 73.73%. High polyp match/retrieval
rates under smaller numbers of k, can greatly facilitate the workflow for radiolo-
gists to effectively and efficiently match the polyp findings in prone-supine CTC



Fig. 3. Retrieval rates versus the number of nearest neighbors on the training (Left)
and testing (Right) datasets.

views. Moreover, MatrixBoost permits faster convergence to the upper bounds
of polyp retrieval rate at k = 7 in both training and testing. Lastly, the polyp re-
trieval performance can be presented using Precision-Recall curves that show the
balance of retrieval accuracy (i.e., the percetage of false pairs retrieved) versus
recall, in Fig. 4. For future work, we plan to generalize our method for temporal
matching of lesion findings captured at different times.

4 Discussion

We proposed an effective and high performance polyp prone-supine view match-
ing method, based on local polyp classification feature learning (via feature se-
lection and metric learning). Our approach is evaluated on at least one order-
of-magnitude larger, multiple hospitals dataset than previous work [1–4]. It can
automatically and robustly handle highly varying colon segmentations from hun-
dreds of patient cases, without any manual editing or preprocessing overhead. In
summary, our method greatly advances the state-of-the-arts for polyp matching,
and makes it more technically feasible for clinical practice.
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