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Abstract. In this work we formulate vessel segmentation on contrast-enhanced 

CT angiogram images as a Bayesian tracking problem. To obtain posterior 

probability estimation of vessel location, we employ sequential Monte Carlo 

tracking and propose a new vessel segmentation method by fusing multiple cues 

extracted from CT images. These cues include intensity, vesselness, organ de-

tection, and bridge information for poorly enhanced segments from global path 

minimization. By fusing local and global information for vessel tracking, we 

achieved high accuracy and robustness, with significantly improved precision 

compared to a traditional segmentation method (p=0.0002). Our method was 

applied to the segmentation of the marginal artery of the colon, a small bore 

vessel of potential importance for colon segmentation and CT colonography. 

Experimental results indicate the effectiveness of the proposed method. 
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1 Introduction 

The marginal artery is a small blood vessel located within the abdominal mesentery 

which travels parallel to the colon, and communicates between the inferior and supe-

rior mesenteric arteries (IMA and SMA). Segmentation of the marginal artery can 

improve supine-prone colonic polyp registration and help connect collapsed colonic 

segments in CT colonography (CTC). The purpose of this pilot study is to automati-

cally detect the marginal artery on high-resolution abdominal CT angiograms (CTA) 

using a sequential Monte Carlo (SMC) tracking method. 

Vessel enhancement filtering, region-growing, active contours, centerline extrac-

tion, and stochastic framework are five major approaches to 3D vessel segmentation 

[1]. Among these methods, SMC tracking, or particle filtering (PF), has been widely 

used for its accuracy, robustness, and computational feasibility. Florin et al. proposed 

a PF-based approach for segmentation of coronary arteries [2]. In their model, state 

variables include position, orientation, shape, and vessel appearance. Later, Schaap et 



al. presented a Bayesian tracking framework for tubular structures such as vessels [3]. 

The key contribution of their work is a novel observation model designed for tube-

like objects. Lacoste et al. employed Markov marked point processes for segmenta-

tion of coronary arteries on 2D angiograms [4]. More recently, Friman proposed a 

multiple hypothesis template tracking scheme for small 3D vessel structures [5]. 

SMC has also been used in computer vision to handle athlete or vehicle tracking in 

video sequences. The collection and utilization of more target and background infor-

mation will typically improve accuracy and robustness for a given noise level. In 

recent years, incorporating multiple cues in the Bayesian tracking framework has 

been a major research direction. Wu and Huang proposed a factorized graphical mod-

el to integrate multiple cues for Bayesian tracking [6]. Brasnett et al. proposed visual 

cues including color, edge, and texture for object tracking in video sequences [7]. The 

work of Moreno-Noguer et al. [8] focused on integrating dependent multiple cues for 

robust tracking. 

In this work, we propose a new Bayesian vessel segmentation method by fusing 

multiple cues extracted from CT images to automatically detect the marginal artery on 

high-resolution abdominal CT angiograms. The remainder of this paper is organized 

as follows: in Sec. 2 we introduce our SMC tracking framework with multiple cues; in 

Sec. 3 we show experimental results on a CTA dataset of 7 patients. We conclude our 

findings in Sec. 4 with a short discussion. 

2 Sequential Monte Carlo Tracking by Multiple Cue Fusion 

2.1 Bayesian Tracking Framework 

First we will introduce the SMC tracking framework and notation. Observations 

 ;t t Ny , ym

t Ry  are typically captured in a sequential order. Each observation has 

an associated hidden variable  ;t t Nx , xm

t Rx which generally corresponds to 

the location of the target and speed at time point t. For each t, the observation ty is 

only conditionally dependent on tx , i.e.    1: 1 1:,t t t t tp p y y x y x , where 1: 1ty  

represents all observations from time point 1 to time point t-1 and tx represents all 

hidden variables from time point 1 to time point t. We also assume that the time se-

quence tx , t=1,2,…T has a Markov property of order one:    1: 1 1t t t tp p x x x x . 

The dynamics of the Markov chain can be described by the following two steps: 

1) Prediction step: 

     1: 1 1 1 1: 1 1t t t t t t tp p x p d     x y x x y x  (1) 

2) Update step: 
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In our implementation, the state variable x was composed by 

 , ', , ', , 'x x y y z zx , corresponding to the current location and moving speed of 

the vessel during the dynamic tracking process. 

2.2 Mixture Dynamic Model Combined with Vector Field 

Considering that the majority of vessel segments are smooth in 3D space and exhibit a 

tube structure, we chose a constant velocity model to capture translational motion: 

1t t t  x Fx d , td ~  0, dN  , (3) 

where matrix F controls the speed at which the target (vessel segmentation) can pro-

ceed during the tracking process. td follows a zero-mean Gaussian distribution whose 

covariance matrix was determined empirically based on the training set.  

 

Fig. 1. 3D vector field plot obtained from Hessian analysis and eigenvector decomposition. 

Eigenvectors with the lowest magnitude eigenvalue correspond to the direction of smallest 

curvature and thus point in the direction of vessel flow. Vectors were used to create accurate 

prediction steps for particle filtering. 

Some vessel segments change direction abruptly and cannot be captured by the trans-

lational motion model, especially at vessel bifurcation points. To track this movement 

we employed a vector field model for motion prediction. A vector field was produced 

by eigenvector decomposition of the Hessian matrix. The eigenvector associated with 

the lowest magnitude eigenvalue indicates the direction of least curvature, corres-

ponding to the direction of vessel flow. The algorithm switches from translational 

motion model to vector field motion model in the presence of a strong vector signal. 

Such utilization of Hessian eigenvectors for motion prediction is novel to the medical 

image analysis field. Fig. 1 shows the vector field on a short segment of the artery. 



2.3 Likelihood Models Combined with Multiple Cues 

In previous particle filtering vessel segmentation work on CT  [2, 3], intensity is used 

as the dominant information. Upon inspection of CT images for vessel segmentation, 

radiologists not only check intensity information, but also utilize anatomical informa-

tion such as organ location, regional vesselness, and fat and muscle tissue. Thus hu-

man vision combines multiple cues during vessel tracking. Inspired by radiologists, 

we propose a new likelihood model for vessel segmentation by fusing multiple cues. 

Fig. 2 shows four tracking domains used to produce cues on an axial slice CT image. 

 

Fig. 2. Four particle filtering domains used to generate vessel tracking cues. A) Vesselness 

response from Hessian analysis, with a mask generated by thresholding and post-processing. B) 

A minimum spanning tree algorithm was applied to intensity and vesselness features to connect 

thin, low contrast segments of the artery. C) A MIP mask was used to amplify vessel signal in 

thin, low contrast segments. D) Global, unthresholded vesselness response to Hessian analysis. 

Intensity Cue. As with traditional vessel segmentation methods, intensity is the 

most important information for vessel tracking on CT. For a particle 
i

tx at time point 

t, 1,...,i N , where N is the total number of particles, we extracted a spherical 

search region and summed the intensities of all voxels within the sphere as our inten-

sity cue for tracking. The single voxel particle intensity was used as an additional cue. 

Vesselness Cue. Because the majority of vessel segments exhibit tube structure, a 

vesselness cue is essential to differentiate true vessels from noisy, bright, blob-like 

areas. We employed Li’s multiscale vessel enhancement filtering [9] to provide this 

vesselness cue. Spatial scale standard deviations from 0.5 voxels to 2 voxels with 0.25 

voxel incremental steps were used for multi-scale analysis. Three vesselness cues 

were utilized: single voxel particle vesselness, vesselness sum within the spherical 

search region, and a binary vessel mask produced by thresholding vesselness response 

and applying ray casting and connected component analysis post-processing. 



Organ Cue by Ray Casting. Nearby organs are a major source of false positives, 

including the bowel, liver, and kidneys. Tracking paths can be attracted to organ 

boundaries having line or curve character. To avoid these particle tracks, a ray casting 

technique was applied at each particle. Rays are casted in 26 spatial directions, and 

halt at either low intensity or a maximum distance, both determined heuristically.  

Maximum Intensity Projection Cue. Maximum intensity projection (MIP) pro-

vides a method to amplify intensity signal in a selected direction. This is an informa-

tive cue for noisy data and thin, peripheral vessel segments with poor contrast en-

hancement. MIP was applied in pre-processing to the volumetric data based on sever-

al pre-selected directions. We then project the 2D detections back to 3D space to 

create a binary mask. 

Missing Vessel Cue. Vessel enhancement is generally not uniform on abdominal 

CT angiograms. Due to non-uniform blood flow or vessel constriction, some seg-

ments may have particularly low enhancement. Thus, some segments are not well 

distinguished by intensity and vesselness cues alone, which necessitates global con-

text information to track these difficult areas. We employed a minimum spanning tree 

to connect segments with very high vesselness response, and generated a missing 

vessel cue mask prior to tracking. The use of a minimum spanning tree as a tracking 

cue is also novel to the medical image analysis field. We used a binary variable B for 

each voxel to indicate whether the voxel lies on a path connecting two curves in the 

3D CT image with high vesselness response. 

Fusing of Multiple Cues. The eight tracking cues are fused as a product of like-

lihoods: 

  ( ) ( ) ( ) ( ) ( )
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L L L L L L    y x y x y x y x y x y x ,   (4) 

where the five likelihood functions correspond to intensity, vesselness, organ, MIP 

and bridge cues. In the fusion process, each cue is treated independently and uniform-

ly regarding its weight. Cues were taken to be independent, which is a common as-

sumption used in computer vision for a Naïve Bayes methodology [7, 8]. For each 

cue, a kernel density estimator (KDE) was leveraged to learn the target distribution 

based on a 10 patient training set. During tracking, cue observations for each particle 

were weighted probabilistically using the respective KDE’s to update the vessel loca-

tion. Fig. 3 shows the kernel density estimation for each cue. The intensity and ves-

selness cues above contain 2 and 3 independent sub-cues, respectively. 

2.4 Automatic Bifurcation Detection 

The marginal artery is composed of several large loops that frequently bifurcate into 

anastomoses, presenting a challenge to a local tracking method. To solve this, we 

implemented a robust automatic bifurcation detection system using a spherical shell 

search region. At each step, the shell was checked for high intensity voxels in the 

enhanced vessel range. A single vessel entering and leaving the shell produced two 

high intensity patches, but at a bifurcation the shell identified three patches indicating 

three paths leaving the sphere. In this case, multiple parallel paths were initialized to 

complete the vessel tree. 



 

Fig. 3. Kernel density estimation from training set for each cue. A) Intensity sum in spherical 

search region. B) Single voxel intensity. C) Hessian vesselness sum in spherical search region. 

D) Single voxel Hessian vesselness response. E) Number of positive voxels from binary thre-

sholded vessel mask with post-processing. F) Number of positive voxels from MIP mask. G) 

Single voxel ray casting score to identify organ. H) Number of positive voxels from binary 

minimum spanning tree mask. 

3 Dataset and Experimental Results 

Our dataset contained 17 patients with high-resolution contrast-enhanced CT angio-

grams, 10 for KDE training and 7 for validation. Data acquisition and analysis were 

conducted under an Institutional Review Board (IRB) approved protocol. CT scans 

were acquired following oral administration of 3 bottles Volumen and intravenous 

administration of 130 ml Isovue-300 with 5 ml/sec injection rate and 30 second delay. 

The scanning parameters were section collimation 1.0-mm, reconstruction interval 0.5 

mm, 512x512 matrix and in-plane pixel dimensions of 0.82 mm to 0.94 mm depend-

ing on the participant’s body size. A major inclusion criterion for the testing set was 

high levels of visceral fat content for good spatial separation of the artery. 

The proposed method was evaluated on the two largest and typically best enhanced 

segments of the marginal artery, which run parallel to the transverse and descending 

colon. A manual seed point was designated at the bifurcation point between these two 

segments, and the algorithm was allowed to track in the three initial vessel directions. 

The tracking algorithm required a runtime of approximately one hour per patient. Fig. 

4 shows the segmentation result on these branches for one patient. Fig. 5 shows the 

recall and precision rates for each testing patient. Compared to the traditional baseline 

Hessian analysis method for vessel segmentation [9], our SMC multiple cue fusion 

algorithm achieved an average recall of 88.5% while improving the average segmen-

tation precision to 32.2%. Baseline average recall and precision rates were 91.4% and 

7.9%, respectively. Recall was defined as the fraction of ground truth voxels detected 

by the algorithm, and precision was defined as the fraction of detected voxels that 



were true detections. Paired student t-test comparison between our algorithm and the 

baseline method showed a p value of 0.639 for recall, and a precision p value of 

0.0002, indicating significance in the precision improvement. 

 

Fig. 4. 3D segmentation of the marginal artery with pelvis and spine for reference. The artery 

was tracked following the transverse and descending colon. The portion shown communicates 

between the SMA and IMA. Ground truth is labeled in green, and SMC detection is labeled in 

red. Detection shown has recall of 94.9% and precision of 58.3%. 

 

Fig. 5. Experimental results comparison between the SMC multiple cue fusion method and 

baseline Hessian vessel analysis. The SMC cue fusion average recall for the 7 testing patients 

was 88.5%, compared to the baseline average recall of 91.4%. Average precision for SMC cue 

fusion was 32.2% compared to the baseline average precision of 7.9%. 



4 Conclusion and Discussion 

We have proposed a novel Bayesian tracking framework using SMC and multiple cue 

fusion to automatically track and segment the marginal artery of the colon on con-

trast-enhanced CT angiograms. Such an algorithm was novel to medical image analy-

sis, and advantageous compared to other vessel tracking methods by incorporating 

more information for tracking robustness. Utilizing this fusion of local and global 

information, we achieved high recall and a significant increase of precision by a fac-

tor of 4 compared to the baseline method. It is important to note that the vast majority 

of false positive detection occurred on other segments of the marginal artery and ab-

dominal vasculature due to frequent anastomosis and our robust bifurcation detector. 

Thus, an extended study evaluating the algorithm on the complete marginal artery or 

abdominal vessel tree would likely further increase precision results. 
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