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Abstract. Institutions that specialize in prostate MRI acquire different
MR sequences owing to variability in scanning procedure and scanner
hardware. We propose a novel prostate cancer detector that can oper-
ate in the absence of MR imaging sequences. Our novel prostate cancer
detector first trains a forest of random ferns on all MR sequences and
then decomposes these random ferns into a sum of MR sequence-specific
random ferns enabling predictions to be made in the absence of one or
more of these MR sequences. To accomplish this, we first show that a
sum of random ferns can be exactly represented by another random fern
and then we propose a method to approximately decompose an arbitrary
random fern into a sum of random ferns. We show that our decomposed
detector can maintain good performance when some MR sequences are
omitted.

1 Introduction
The use of multi-parametric MRI (mpMRI) is the most effective way to detect
and biopsy prostate cancer [4]. However, institutions specializing in prostate
MRI have different scanning procedures and hardware resulting in different MR
images. This particularly poses a challenge for computer-aided detection (CAD)
of prostate cancer as many existing CAD methods (e.g. [9, 12, 7]) were developed
for specific MR sequences coming from a single institution and will not function
in the absence of expected MR images. To address this problem, we propose a
novel prostate CAD that is capable of making predictions in the absence of one or
more MR sequences it was trained on. This might include sequences like Dynamic
Contrast Enhancement (DCE) or high b-value (e.g. B1500) diffusion images that
may not be acquired owing to patient comfort or limitations of scanner hardware
respectively. Our CAD uses T2 weighted (T2W), apparent diffusion coefficient
(ADC) and B1500 MR sequences and first builds several random ferns that use
features computed on T2W, ADC and B1500 images combined. Then we present
a method to decompose the trained random ferns into a sum of random ferns
that each individually operate on one of T2W, ADC and B1500 images. The
result is a prostate CAD that can simply exclude MR sequence-specific models
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Fig. 1: Examples of T2W, ADC and calculated B1500 images with corresponding
CAD probability map. Hypointense regions in T2W and ADC can indicate the
presence of prostate cancer, while hyperintense regions in B1500 indicate the
presence of prostate cancer. Probability map colors range from blue (low score)
to red (high score). There is a clinically significant (Gleason 3+4 or higher)
transition zone lesion in this example that is correctly predicted by the CAD.

from the sum during prediction. We show that the decomposed model exhibits
similar performance to the original model. We also explore the performance
consequences of missing information. Furthermore, we show that our prostate
CAD can maintain good performance when omitting several combinations of
MR sequences.

2 Related Works
There are several examples of prostate CAD systems in the literature. The gen-
eral workflow for these systems is to read in several images from mpMRI and
then produce a colorized confidence or probability map indicating voxel-by-voxel
suspicious regions. Some systems [9] further process these probability maps to
extract lesion segmentations. The probability maps can then be interpreted by
radiologists or used in guided biopsy procedures. Figure 1 shows a few examples
of mpMRI images and probability maps. A few recent examples of CAD include
the works of [9, 12, 7]. The system in [7] uses Support Vector Machine (SVM)
with local binary pattern features computed on T2W and B2000 images. The
work of [9] uses random forest, Gentle Boost, and LDA each using a combination
of T2W, ADC, B800 and DCE images with features based on pixel intensity, rel-
ative location in the prostate, texture, blobness and pharmacokinetic heuristics.
This work further segments and classifies lesions based on the output from the
voxel classifier. The system proposed in [12] picks candidate locations based on
a multi-scale Hessian-based blobness filter which are then each classified with
an LDA classifier. The LDA classifier uses statistics-based features computed on
T1W, T2W, ADC, DCE and Ktrans images. Although not applied to mpMRI or
prostate cancer detection, the work of [6] develops a deep learning system that
can train and test in the absence of images. Their system uses a set of disjoint
neural network (NN) pipelines that individually process different kinds of im-
ages. The output of these pipelines are then averaged to produce the prediction.
When an image is missing, the average omits the output from the corresponding
pipeline.

Our system is fundamentally different to existing prostate CAD systems in
that it does not require the availability of all MR sequences used to train the
model and can still make predictions even if operating on a single image. Other



differences to existing prostate CAD systems include the use of a different clas-
sifier, the use of a transition zone segmentation, as well as the use of different
features. We additionally introduce a new way to train random ferns and a
way to decompose them into a sum of random ferns. While the work of [6] can
also operate in the absence of images, our method infers sequence-specific clas-
sifiers through an explicit model decomposition while [6] jointly optimizes the
modality-specific pipelines in an end-to-end fashion.

3 Methods
The proposed prostate CAD operates on 2D image slices and is comprised of
pixel-wise random fern classifiers [11] employing intensity statistics and Haral-
ick texture features [5]. The random ferns are first trained on features calculated
on all T2W, ADC and B1500 MR images and then the resulting model is de-
composed into a sum of random ferns that each operate individually on features
calculated on T2W, ADC and B1500. Figure 1 shows an example of these MR
sequences and corresponding CAD prediction. When one or more of these MR
sequences are missing, the CAD excludes the corresponding random ferns from
the evaluation and can still produce a probability map. We chose random ferns
since they are similar to and simpler than decision trees and are thus robust and
powerful learners while being intuitive to understand and manipulate.

3.1 Random Ferns
Random ferns [11] are constrained decision trees that behave like checklists of
yes/no questions based on the input feature vector. The combination of yes/no
answers are then used to lookup a prediction. As observed in [11], this checklist
behavior is synonymous to a decision tree using the same decision criteria at
each level of the tree.

Our method modifies random ferns in a number of ways. First, the binary de-
cisions for each fern are selected by employing Feature Selection and Annealing
(FSA) [2]. Second, we use mean aggregation instead of semi-näıve Bayes aggre-
gation. Several independent random ferns are trained on randomly sampled data
to produce a forest of random ferns.

Where decision tree training employs a simple recursive optimization strategy
to select binary decisions, the constrained decision structure of random ferns
make such recursive optimization strategies prohitibively expensive. We avoid
this issue entirely by instead noting that a sum of decision stumps can be exactly
represented as a random fern as illustrated in figure 2. We instead optimize a
sum of decision stumps and assume the resulting model is approximately the
unknown optimal random fern.

To select optimal binary decisions for the random fern, decision stumps are
first exhaustively generated for each feature. This is done by discretizing the
range of observed feature responses and using these as decision thresholds for
each decision stump. Then a coefficient is associated with each leaf of every
stump. The sum of these stumps forms a linear model for FSA to optimize. FSA
simultaneously minimizes a loss function while selecting the most informative
decision stumps. As in [2], we use the Lorenz loss function for FSA in this work.
Lastly, the FSA-selected decisions are used to train the fern by passing examples
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Fig. 2: Example of a sum of two decision stumps resulting in a random fern.
This generalizes when summing more than two stumps. Note that an arbitrary
random fern cannot be exactly represented by a sum of stumps in general.

down the fern and computing the label distribution p(y|x) in each leaf where
y ∈ {0, 1} is the class label and x ∈ RF is the feature vector. This process is
repeated on several randomly sampled training sets to form a forest of jointly
trained random ferns.

3.2 Random Fern Decomposition
Each jointly trained random fern T is then decomposed into three MR sequence-
specific random ferns by first forming empty random ferns each using only T2W,
ADC and B1500 binary decisions from the original random fern. More specifi-
cally, if L represents a leaf of the original depth D random fern T with L ∈ T ,
then L reprsents a unique combination of yes/no answers that identify that spe-
cific leaf. We then augment L = {`1 | `2 | `3} where `m represents both a leaf
of a random fern Tm specific to MR sequence m (T2W: m = 1, ADC: m = 2,
B1500: m = 3) as well as the outcome of decision criteria specific to that MR
sequence. We additionally use the notation I(` ⊆ L) ∈ {0, 1} to indicate that
a subset of the decision criteria outcomes ` match in L. We also further abuse
notation by treating leaves L ∈ T, ` ∈ Tm as integers. Then we use specialized
Artificial Prediction Market (APM) [1] to fit the sum of three MR sequence-
specific random ferns to the jointly trained random fern. We chose specialized
APM since it supports models that can abstain from participation (e.g. due to
missing information). We treat random fern T as the ground truth and can thus
exactly calculate the mass p(L) of examples occurring in leaf L as well as the
label distribution p(y|L) in leaf L. We can then indirectly infer a linear aggre-
gation c(y|L) of the sequence specific random ferns T1, T2, T3 by iterating the
update rule (2) over each populated leaf L ∈ T .

c(y|L) =
1

Z

3∑
m=1

∑
`∈Tm

I(` ⊆ L)βm,`,y for y = 0, 1, L ∈ T (1)

βm,`,y ← βm,`,y + η

(
−βm,`,yI(` ⊆ L) + p(L)p(y|L)

βm,`,yI(` ⊆ L)

c(y|L)

)
(2)

Here Z is a normalizer, η is the learning rate, βm,`,y the learned prediction of
leaf `. The update rule is repeatedly used for each leaf L from the jointly trained
random fern until convergence. The result is 3 constituent random ferns with
leaves ` predicting βm,`,y. The resulting ferns can then be aggregated using a
form similar to c(y|L) as the predicted probability and this is given as

c(y|x) =
1

Z

∑
Im available

βm,`m,y (3)

where Z is a normalizer, `m = Tm(x) is the predicted leaf for feature vector x
on MR image Im.



3.3 Data
We train and evaluate the proposed method on a combination of cases from NIH
and data made available through the recent ProstateX Challenge [9]. All MR
sequences (T2W, ADC, B1500) were aligned, resampled to 0.35mm× 0.35mm×
3mm, and normalized using a Rician-based normalization [8]. Cases from NIH
feature 19 healthy patients and 49 pathology-corroborated hand-drawn lesions
prepared by a radiologist. The ProstateX data featured a database of points
with corresponding clinical significance binary label for 204 training cases.

3.4 Prostate Segmentation
This CAD relies on the presence of a prostate and transition zone segmentation
as it trains separate transition zone and peripheral zone classifiers. Segmenta-
tions for the NIH cases were prepared manually by a radiologist while the 204
ProstateX cases were automatically segmented by an algorithm based on [10, 3]
with the possibility of manual correction. The method does depend on a well
bounded prostate segmentation since it is liable to misclassify the background in
T2W or ADC.

3.5 Training
Each fern was trained on an independent random subset of training cases without
regard to annotation type. Positive and negative points were densely sampled
inside the prostate for healthy cases and cases with hand-drawn lesion contours.
Positives were densely sampled within 5 mm of clinically significant points in
ProstateX cases. No negatives were sampled from ProstateX cases since lesion
extent is not known and the reason for the points in the database are not known.

3.6 Statistical Analysis
The proposed CAD was analyzed on five sets of two fold cross validation ex-
periments with each cross validation experiment generated on randomly shuffled
data and thus resulting in 10 total distinct experiments. Our 10 experiments
always train and test on ≈ 1/2 and ≈ 1/2 of data set and we believe this better
characterizes the generalizability of the method than either 2 fold or 10 fold cross
validation. Cross validation was used purely for assessing performance and no
hyperparameters were picked using the test folds. The data were split so that ap-
proximately the same number of healthy, contour and ProstateX cases were used
in each fold. We compared the original random fern model to the decomposed
random fern model. We also considered the performance of the proposed CAD
on a variety of combinations of T2W, ADC, and B1500 images. Performance
was measured in terms of ROC curves for detection and clinical significance
classification.

To demonstrate the difference between decomposing MR sequence-specific
models and training directly on MR sequences we retrained the decomposed
T2W, ADC and B1500 models on examples coming from each MR sequence. For
the purpose of comparing the models, the decision criteria were kept constant and
the fern predictions were directly recalculated on its training set. The resulting
AUCs and margins were calculated for the two models over the five permutations
of two fold cross validation. The margin was calculated in a weighted sense and
is given by



Table 1: Comparison of MR sequence-specific classifiers produced from decompo-
sition (Ours) and the same classifier retrained on the corresponding MR sequence
(Tuned). The columns are the average margin and AUC from the averaged ROC
curves over the five permutations of two fold cross validation. Bold numbers
indicate maximum value for the corresponding task.

Detection Ours Detection Tuned ProstateX Ours ProstateX Tuned
MR Seq. Margin AUC Margin AUC Margin AUC Margin AUC
T2W 0.17 (0.02) 0.84 0.09 (0.01) 0.85 0.08 (0.02) 0.72 0.04 (0.02) 0.71
ADC 0.24 (0.03) 0.91 0.09 (0.01) 0.91 0.10 (0.03) 0.72 0.04 (0.01) 0.74
B1500 0.21 (0.02) 0.90 0.13 (0.01) 0.90 0.13 (0.03) 0.84 0.08 (0.01) 0.83

margin =
1

2|N+|
∑

x∈X+

p(y = 1|x)− 1

2|N−|
∑

x∈X−

p(y = 1|x) (4)

where X+ and X− are the positive and negative examples and | · | denotes
cardinality.

Detection ROC Detections and false positives were determined on the cases
with lesion contour annotations. Probability maps and contour annotations were
first stacked to define 3D probability maps and lesion masks. For each lesion,
the 90th percentile of the probability scores occurring inside the lesion was taken
to be the lesion’s score. If the lesion score exceeded a threshold, then the lesion
was said to be detected. False positives were determined by cutting the prostate
into 3mm × 3mm × 3mm cubes. The 90th percentile of probabilities occurring
inside each cube were determined and used as the cube’s score. If a cube did not
coincide with a lesion and its score exceeded a threshold, then cube was said to
be a false positive.

ProstateX ROC The ProstateX Challenge data includes an annotated database
of image points and whether they correspond to clinically significant cancer or
not. Each point was scored by the CAD by first stacking the probability maps
into a 3D probability map. Then the 90th percentile of probability scores occur-
ring inside a 5 mm ball was taken to be the point’s score. A classification ROC
curve was then calculated against these scores and their ground truth.

4 Results
The ROC curves were calculated on each of the test sets from each of the cross
validation experiments and were averaged with respect to false positive rate.
These averaged ROC curves are displayed in figure 3. The curves compare the
performance of the CAD using the random ferns trained on all MR sequences
(Jointly Trained) to the CAD using decomposed random ferns evaluated on a
combination of MR sequences.

Table 1 features AUCs and margins of the T2W, ADC and B1500 decomposed
models and their retrained counterparts while figure 4 illustrates the margin’s
effects on the decomposed T2W model and retrained T2W model.

5 Discussion
The detection ROC in figure 3 reveals similar performance between the jointly
trained model and the decomposed model using all sequences (T2W+ADC+B1500)
demonstrating no loss in detection performance even after decomposing the
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Fig. 3: ROC curves of the CAD system evaluated as a detector and a clinical
significance classifier.

(a) T2W+ADC+B1500 (b) T2W Decomposed (c) T2W Retrained

Fig. 4: An example of probability maps produced by the decomposed model using
T2W+ADC+B1500 (a), the T2W model (b) and the retrained T2W model (c).
The latter illustrates the reported low margin of the retrained model.

jointly trained model. When some sequences are missing, the CAD is able to
maintain similar or good detection performance with decomposed models ADC+B1500,
T2W+B1500, ADC and B1500 achieving not less than 0.9 AUC in performance.
When diffusion is completely excluded, we see that the decomposed CAD can
still achieve a good AUC of 0.84, the lowest of all reported detection AUCs.

Similar ProstateX performance is also seen in figure 3 between the jointly
trained model and decomposed model again showing little to no loss in perfor-
mance. The ProstateX data set is comprised of outcomes of targeted biopsies
which implies that the data set may be biased toward only suspicious prostate
regions and many false positives such as artifacts or benign structures are likely
to be already ruled out. For this reason and based on findings in the work of [7],
it is not beyond expectation to find that B1500 achieved the highest ProstateX
AUC of 0.84.

Table 1 shows the value of decomposition over training single sequence mod-
els. Importantly, both single-sequence models use identical features and decision
criteria for fair comparison. While the detection and ProstateX AUCs of the two
models are similar, the prediction margin of the decomposed models are higher
and would produce more contrasting probability maps as seen in figure 4.

Lastly, owing to differing evaluation methodology, private data sets, and the
lack of prostate CAD systems that can operate in the absence of MR sequences,



it is difficult, perhaps even meaningless, to objectively compare our performance
with other methods in the literature. However, this method did place third in the
ProstateX competition with a test AUC of 0.83 tailing methods that achieved
test AUCs of 0.84 and 0.87.

6 Conclusion
Decomposing random ferns to operate on individual MR sequences provides
increased flexibility with little to no performance loss when working with data
that may or may not include some MR sequences. Many combinations of MR
sequences were also shown to provide similar performance to the CAD using all
available MR sequences. The decomposed models also generally provide more
contrasting positive and negative predictions while matching the performance of
same models explicitly retrained on individual sequences.
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