
Towards Automated Colonoscopy Diagnosis:
Binary Polyp Size Estimation via
Unsupervised Depth Learning

Hayato Itoh1, Holger Reinhard Roth1, Le Lu2,
Masahiro Oda1, Masashi Misawa3, Yuichi Mori3, Shin-ei Kudo3,

Kensaku Mori1,4,5

1 Graduate School of Informatics, Nagoya University, Japan
2

3
AI-Infra, NVIDIA Corp. Bethesda, Maryland, USA

Digestive Disease Center, Showa University Northern Yokohama Hospital, Japan
4 Information Technology Center, Nagoya University, Japan

5 Research Center for Medical Bigdata, National Institute of Informatics, Japan

Abstract. In colon cancer screening, polyp size estimation using only
colonoscopy images or videos is difficult even for expert physicians al-
though the size information of polyps is important for diagnosis. Towards
the fully automated compute-aideddiagnosis (CAD)pipeline, a robust and
precise polyp size estimation method is highly desired. However, the size
estimation problem of a three-dimensional object from a two-dimensional
image is ill-posed due to the lack of three-dimensional spatial informa-
tion. To circumvent this challenge, we formulate a relaxed form of size
estimation as a binary classification problem and solve it by a new deep
neural network architecture: BseNet. This relaxed form of size estimation
is defined as a two-category classification: under and over a certain polyp
dimension criterion that would provoke different clinical treatments (re-
secting the polyp or not). BseNet estimates the depth map image from
an input colonoscopic RGB image using upsupervised deep learning, and
integrates RGB with the computed depth information to produce a four-
channel RGB-D imagery data, that is subsequently encoded by BseNet to
extract deep RGB-D image features and facilitate the size classification
into two categories: under and over 10mm polyps. For the evaluation of
BseNet, a large dataset of colonoscopic videos of totally over 16 hours is
constructed. We evaluate the accuracies of both binary polyp size esti-
mation and polyp detection performance since detection is a prerequisite
step of a fully automated CAD system. The experimental results show
that our proposed BseNet achieves 79.2 % accuracy for binary polyp-size
classification. We also combine the image feature extraction by BseNet
and classification of short video clips using a long short-term memory
(LSTM) network. Polyp detection (if the video clip contains a polyp or
not) shows 88.8 % sensitivity when employing the spatio-temporal image
feature extraction and classification.
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Fig. 1: Examples of polyps on colonoscopic images. Top and bottom rows show
images that capture polyps with diameters of 6mm and 10mm, respectively. From
left to right, columns show images with different (long to short) distances from
colonoscope to polyps.

1 Introduction

Size information of detected polyps is an essential factor for diagnosis in colon can-
cer screening. For example, the U.S. guideline for colonoscopy surveillance defines
what treatments should be acted after a physicians find polypswith respect to their
size estimations [1].Whether the size of a polyp is over or under 10mm is important.
The guideline [1] defines that patients with only 1 or 2 small (≤ 10mm) tubular
adenomas with only low-grade dysplasia should have their next follow-up in 5−10
years; and patients with 3 to 10 adenomas, or any adenoma >10mm, or any ade-
noma with villous features or high-grade dysplasia will have follow-ups in 3 years.
However, polyp size estimation using only colonoscopy is quite difficult even for
expert physicians so that automated size estimation techniqueswould be desirable.

In generally, size estimation of a 3D object from a 2D image is an ill-posed
problem due to the lack of three-dimensional spatial information. Figure 1 demon-
strates the challenge of the polyp-size estimation from a colonoscopic image.
Polyps with different diameters from 2mm to 16mm may have the similar im-
age sizes or ranges. The image size of a polyp depends on both the true 3D polyp
size and the physical distance from colonoscope to the polyp. Our key question is
that will the recovered image depth information augmented with original colono-
scopic RGB images be helpful for polyp size estimation and detection. Depthmaps
frommonocular colonoscopic RGB images can be computed through unsupervised
deep neural network [2, 3].

Previous techniques have been proposed for 3D scene reconstruction and cam-
era pose recovery out of 2D images [4, 5]. Ref. [4] extracts invariant geometry fea-
tures of rigid objects and complies them to the geometrical constraints of cameras
to reconstruct 3D information. In colonoscopy, there is only one light source where
shading based 3D object shape reconstruction [5] is possible. However these 3D
reconstructionmethodsmay not work well in colonoscopy due to the non-rigidness
and complex textures the colon wall.

We propose a new method for binary polyp size estimation or classification
from a single colonoscopic image. The problem of size estimation is relaxed into a
binary size classification task according to guidelines [1]. We propose the binary-
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size estimation network (BseNet) to solve two-category polyp classification. First,
BseNet estimates depth maps from three-channel (RGB) colonoscopic images via
unsupervised depth recovery convolutional neural networks [2, 3], and integrates
all channels into RGB-D imagery. Second, RGB-D image features from the newly
integrated imagery are extracted. Third, the two-category classification for binary
size estimation is performed by classifying these RGB-D image features. Finally,
For a complete and automated computer-aided polyp diagnosis system, we ex-
ploit the polyp detection performance based on spatio-temporal deep features by
leveraging a large dataset of colonoscopic videos.

2 Methods

2.1 Spatio-temporal Video based Polyp Detection

Before estimating binary polyp sizes, polyp detection is a prerequisite processing
step with no de facto standardmethods [6, 7]. In this paper, we adopt scene classifi-
cation representation to classify the existence status of polyps in any colonoscopic
video sub-clips: as positive when at least one polyp exists, or negative when there
is no polyp. Polyp detection in colonoscope imagery requires the extraction of
spatio-temporal image feature from videos. Successive colonoscopic image frames
usually include similar objects of the same scene category. In particular, for the
positive category, a polyp should appear in successive frames. Therefore, polyp
detection as scene classification needs to handle the temporal context in addition
to the spatial structure of 2D images.

To extract and classify spatio-temporal image features for polyp detection,
we use the 3D convolutional neural network (C3dNet) [8]. Fig. 2 illustrates the
C3dNet network architecture. The input for C3dNet is a set of successive 16 frames
extracted from colonoscopic videos. We set all 3D convolutional filters as 3×3×3
with 1× 1× 1 stride. All 3D pooling layers are 2× 2× 2 with 2× 2× 2 stride,
except for the first pooling layer which has kernel size of 1× 2× 2. The output
of C3dNet are the probability scores of two categories. If the output probability
for positive category is larger than the criterion, polyp detection CAD system
concludes that the input frames represent the scene where polyp exists. Note that

Fig. 2: Architecture of spatio-temporal classification for polyp detection. C3dNet
extracts deep image spatial-temporal features via 3D convolutional and pooling
procedures.
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before classification, we empirically search the best hyper-parameters of C3dNet
to be optimized for polyp detection using the training dataset.

2.2 Two-category Polyp Size Estimation

Our main purpose is to achieve the binary polyp size estimation (over 10mm in
diameter or not) froma 2D colonoscopic imageX ∈RH×W×3 of three channelswith
heightH and widthW . The straightforward estimation of polyp size s is defined as

min ∥s−s∗∥2 w.r.t. s=f(X ), (1)

where ∥·∥2 is the Euclidean norm, and s∗ is the ground truth. This minimization
problem is solved as regression that minimizes the square root error. However, this
is an ill-posed problem since a 2D colonoscopic frame represents the appearance
of a polyp on an image plane without available depth information. Therefore, we
consider the function f(X ,D∗) with the depth imageD∗∈RH×W that minimizes

∥s−s∗∥2 w.r.t. s=f(X ,D∗). (2)

We need annotated data with high precision to solve this minimization problem
accurately. Note that polyp size annotation on images usually include small errors.

To make the polyp size estimation problem more practical and robust, we de-
fine the following relaxed minimization function with ground truth sB∈{0,1} and
L0-norm ∥·∥0 as

∥f(X ,D∗)−sB∥0 (3)

with respect to

f(X ,D∗)=

{
1, a polyp on an image is larger than 10mm,

0, otherwise.
(4)

Depth map information D∗ is necessary in this definition although colonoscope
device is not able to measure image depth values directly. In this relaxed form, we
compute the depth image D ∈ RH×W that represents only relative depth infor-
mation in an image, such like far and near. This type of depth cue D is not the
physical distance from colonoscope to an object. Our depth images are obtained
by adopting the unsupervised deep learning method of depth estimation from [2,
3]. Using Depth or Disparity CNNs [2, 3], we define a depth estimation function
g(X ) that satisfies

min ∥g(X )−D∗/∥D∗∥F∥F, (5)

where ∥ ·∥F is Frobenius norm, through unsupervised learning. This neural net-
work need only colonoscopic videos for training, without ground truth of depth
information (which is infeasible to acquire annotations for colonoscopic videos, if
not entirely impossible).

Our proposed BsdNet shown in Fig. 3 intends to satisfy

min ∥f(X ,g(X ))−sB∥0 and min ∥g(X )−D∗/∥D∗∥F∥F. (6)
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Fig. 3: Architecture of the binary polyp size estimation network (BseNet). BseNet
first estimates the depth map from an RGB colonoscopic image by employing
depth CNN. The estimated depth image is then combined with the input RGB
channels to form an RGB-D image. BsdNet then classifies the newly composite
RGB-D image into two categories: polyp over and under 10mm in diameter.
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Fig. 4: Architecture of RGB-D CNN. Input is an RGB-D image of four channels.

The BseNet output the estimated size label s∈{0,1} for an input colonoscopic im-
age. The right term of Eq. (6) is minimized by Depth CNN. The left term of Eq. (6)
is minimized by RGB-D CNN shown in Fig. 4. The RGB-D CNN extracts RGB-D
image features that minimizes the softmax loss function of two-category classifi-
cation, that is, classification of polyps whether over or under 10mm in diameter.

3 Experimental Results

Dataset: We construct a new dataset to validate our proposed polyp detection
and binary size estimationmethod.We collect 73 colonoscopic videos, captured by
CF-HQ290ZI (Olympus, Tokyo, Japan), with IRB approval. All frames of these
videos are annotated by expert endoscopists. The total time of these videos is
about 16 hours 37 minutes. The total video run time is 4 hours 55 minutes (where
152 polyps are present or exist). These videos are captured under the different
observation conditions of white light, narrow band imaging, and staining. Each
frame is annotated and checked by two expert colonoscopists with experience over
5000 cases. Labels of pathological types, shape types, size (2, 3, ...,16mm) and
observation types are given.

3.1 Polyp Detection

We extract only the polyp frames that are captured under the white light con-
dition. For non-polyp frames, we obtain images where polyps do not exist under
several observation conditions. We divide these extracted frames into the training
and testing datasets. The training dataset consist of polyp frames of 30 minutes
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Fig. 5: Results for polyp detection. (a) Receiver Operating Characteristic (ROC)
curve. (b) and (c) illustrate difficult and easy types, respectively, for detection.
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Fig. 6: The results of colonoscopic depth image estimation by unsupervised depth
CNNs. White and black pixels represent near and far distances, respectively, from
colonoscope.

Table 1: Results for each frame
accuracy for each frame

BseNet 79.2 %

CNN 77.5 %

Table 2: Results for each video clip
RGB feature RGB-D feature

Mean 55.3 % 73.7 %

LSTM 73.7 % 79.0

30 seconds and non-polyp frames of 24 minutes 12 seconds. The testing dataset
represents of polyp frames of 18 minutes 1 second and non-polyp frames of 18
minutes 23 seconds. The training and testing datasets include different 102 and
50 polyps, respectively. Only training dataset is used for searching of optimal
hyper-parameters of C3dNet with Adam optimizer. The testing dataset is used
for validation of the classification accuracy of polyp and non-polyp frames. In both
training and test datasets, colonoscopic images are rescaled into the resolution of
112x112 pixels. Therefore, the size of input data for c3dNet [8] is 112x112x16.
Figure 5 summarizes the validation results on the testing dataset.

3.2 Polyp Size Estimation

Single image based polyp size classification: We evaluated accuracy of the
polyp size estimation as a frame classification problem for colonoscopic videos.We
extracted 34,396 and 13,093 images of protrude polyps from 73 colonoscopic videos
for training and test dataset for size estimation. The training and test datasets
include different protrude polyps without duplication.
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The training of BseNet is divided to two procedures. At the first training, we
trainedDepthCNNby using the polyp frames of 30minutes 30 second in the previ-
ous subsection. For the second training, we estimated depth images of the training
and test dataset and generated RGB-D images for training and test respectively.
Figure 6 shows the depth images and original RGB images. At the second train-
ing, we trained RGB-D CNN with Adam for the generated RGB-D images. We
evaluate the ratio of correct estimation as accuracy by using test dataset. For the
comparison, we also trained RGB CNN and estimate polyp sizes by using the
same training and test dataset of RGB-images. Table 1 summalizes the results of
RGB-CNN and BseNet.
Video Clip based polyp size classification:We evaluated the polyp size esti-
mation as a sequence classification problemwith long-short termmemory (LSTM)
recurrent neural networks [9]. Given the per-frame predictions P (Xt) ∈ [0,1] for
over 10mm size and per-frame penultimate feature response F (Xt)∈R288 of our
size estimation of BseNet (F8 layer in Fig. 4) for a time sequence t=1,2,...,, we
build a sequence of feature vectors fs = [P (X1),F (X1)

⊤,...P (Xn),F (Xn)
⊤]⊤ for

LSTM classification. In our case, this results in a 289 length real valued vector for
each frame of the sequence. We standardize all sequences to have zero-mean and
std. dev. of one based on our training set. We furthermore limit the total length of
a sequence to 1,000 by either truncating the longer or padding the shorter polyp
video clip feature vectors.

LSTMmodel:Wefirstly use a stack of two LSTM layers consisting of 128 and
64memory units each.The outputs from the secondLSTM layer are then fed to two
fully connected layers with 64 and 32 units, each employing batch normalization
followed ReLU activations. A final fully connected layer predicts the polyp size
from each sequence vector fs with a sigmoid activation for binary classification.

Results are summarized in Table 2 and compared to using the average predic-
tion value |P (Xt)| of all frames in the polyp sequence. As we can observe, both
RGB and RGB-D cases experience an improved prediction accuracy using the
LSTM model with the RGB-D model outperforming the model only based on
color channels.

4 Discussion

When using the threshold criterion of 0.5 for polyp detection (see red square on
Fig. 5), accuracy, sensitivity and specificity scores are 74.7%, 88.1% and 61.7%, re-
spectively. The area under ROC curve (AUC) value is 0.83. In the current results,
specificity is smaller than sensitivity, which implies the wider or broader varieties
of patterns in the negative class of non-polyp frames for polyp detections. In these
experiments, the detection rate of flat elevated polyp as shown in Fig. 5(b) is
smaller than the detection rate of protruded polyps, demonstrated in Fig. 5(c).

The experimental results for size estimations show that our proposed BseNet
(using RGB+D) achieves 79.2% accuracy for binary polyp-size classification that
is about 2% larger than the accuracy of CNN (only using RGB). This results im-
ply the validity of relaxed form of size estimation. We also combine the image
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feature extraction by BseNet and classification of short video clips using a long
short-term memory (LSTM) network. The results of LSTM classifications also
show that RGB+D features that extracted by BseNet achieves 5.3% higher accu-
racy than RGB features alone. These results show the validity of RGB-D features
extracted by BseNet.

5 Conclusions

We formulated the relaxed form of polyp size estimation from colonoscopic video as
the binary classification problem and solve it by proposing the new deep learning-
based architecture: BseNet towards automated colonoscopy diagnosis. BseNet es-
timates the depth map image from an input colonoscopic RGB image using upsu-
pervised deep learning, and integrates RGBwith the computed depth information
to produce four-channel RGB-D imagery data. This RGB-D data is subsequently
encoded by BseNet to extract deep RGB-D image features and facilitate the size
classification into two categories: under and over 10mm polyps. Our experimen-
tal results show the validity of the relaxed form of the size estimation and the
promising performance of the proposed BseNet.
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