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Abstract. Tumor growth prediction, a highly challenging task, has long
been viewed as a mathematical modeling problem, where the tumor
growth pattern is personalized based on imaging and clinical data of
a target patient. Though mathematical models yield promising results,
their prediction accuracy may be limited by the absence of population
trend data and personalized clinical characteristics. In this paper, we pro-
pose a statistical group learning approach to predict the tumor growth
pattern that incorporates both the population trend and personalized
data. In order to discover high-level features from multimodal imag-
ing data, a deep convolutional neural network approach is developed
to model the voxel-wise spatio-temporal tumor progression. The deep
features are combined with the time intervals and the clinical factors to
feed a process of feature selection. Our predictive model is pretrained on
a group data set and personalized on the target patient data to estimate
the future spatio-temporal progression of the patient’s tumor. Multi-
modal imaging data at multiple time points are used in the learning,
personalization and inference stages. Our method achieves a Dice coeffi-
cient of 86.8% ± 3.6% and RVD of 7.9% ± 5.4% on a pancreatic tumor
data set, outperforming the DSC of 84.4%± 4.0% and RVD 13.9%± 9.8%
obtained by a previous state-of-the-art model-based method.

1 Introduction

Pancreatic neuroendocrine tumors are slow-growing, and usually are not treated
until they reach a certain size. To choose between nonoperative or surgical treat-
ments, and to better manage the treatment planning, it is crucial to accurately
predict the patient-specific spatio-temporal progression of pancreatic tumors [9].

The prediction of tumor growth is a very challenging task. It has long been
viewed as a mathematical modeling problem [2,5,9]. Clinical imaging data pro-
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vide non-invasive and in vivo measurements of the tumor over time at a macro-
scopic level. For this reason, previous works on image-based tumor growth mod-
eling are mainly based on the reaction-diffusion equations and on biomechanical
models. Some previous tumor growth models [2,5,9] are derived from two or
more longitudinal imaging studies of a specific patient over time. While they
yield promising results, they fail to account for the population trend of tumor
growth patterns and specific tumor clinical characteristics.

Aside from mathematical modeling methods, the combination of data-driven
principles and statistical group learning may provide a potential solution to
solve these problems by building a model based on both population trend and
personalized clinical characteristics. The only pioneer study in this direction [8]
attempts to model the glioma growth patterns in a classification-based frame-
work. This model learns tumor growth patterns from selected features at the
patient-, tumor-, and voxel-levels, and achieves a prediction accuracy of 59.8%.
However, this study only uses population trend of tumor growth without incorpo-
rating the history of the patient-specific tumor growth pattern, and is unable to
predict tumor growth at different time points. Furthermore, this early study only
employs hand-crafted low-level features. In fact, information describing tumor
progression may potentially lie in the latent high level feature space of tumor
imaging, but this has yet to be investigated.

Representation learning, which automatically learns intricate discriminative
information from raw data, has been popularized by deep learning techniques,
namely deep convolutional neural networks (ConvNets) [7]. ConvNets have sig-
nificantly improved quantitative performance on a variety of medical imaging
applications [3]. The idea is using deep learning to determine the current status
of a pixel or an image patch (whether it belongs to object boundary/region, or
a certain category). The ConvNets have been used in prediction of future sta-
tus of image level - disease outcomes, such as survival prediction of lung cancer
patients [10]. However, it is still unknown whether deep ConvNets are capa-
ble of predicting the future status at the pixel/voxel level, such as later pixel
subsequent involvement regions of a tumor.

In this paper, we propose a statistical group learning framework to predict
tumor growth that incorporates tumor growth patterns derived from population
trends and personalized clinical factors. Our hypothesis is that regions involved
in future tumor progression is predictable by combining visual interpretations of
the longitudinal multimodal imaging information with those from clinical factors.

Our main objective is to design a deep learning predictive model to predict
whether the voxels in the current time point will become tumor voxels or not
at the next time point (cf. Fig. 1). First, the ConvNet is used to discover the
high-level features from multimodal imaging data that carry different aspects of
tumor growth related information: (1) FDG-PET (2-[18F] Fluoro-2-deoxyglucose
positron emission tomography), to measure the metabolic rate; (2) dual-phase
CT, to quantify the physiological parameter of the cell density and to delineate
the tumor boundary. An example of such multimodal data (color-coded PET
overlays on CT) is shown in Fig. 1. Second, the extracted deep features are
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Fig. 1. Framework of the voxel-wise prediction of tumor growth via statistical learning.

combined with time intervals, tumor-level features and clinical factors to form
a concatenated feature vector, from which a robust feature subset is selected by
the support vector machine recursive feature elimination (SVM RFE) technique
[4], regularized with prior knowledge. Third, a SVM predictive model is trained
on a group dataset and personalized on the target patient data to predict the
tumor’s spatio-temporal growth and progression.

Our proposed group learning method is compared with a state-of-the-art
model-based method [9] on a pancreatic tumor growth dataset, and attains both
superior accuracy and efficiency. These results highlight the relevance of tumor
high-level visual information, as well as tumor- and patient-level features, for
predicting the spatio-temporal progression of pancreatic tumors. Our contribu-
tions are two-fold: (1) To the best of our knowledge, this is the first adoption
of deep ConvNets in voxel-wise prediction of future voxel status, especially to
learn the spatio-temporal progression pattern of tumors from multimodal imag-
ing; (2) The proposed method allows for incorporating tumor growth patterns
from a group data set and personalized data into a statistical learning framework.

2 Group Learning Approach for Tumor Growth
Prediction

In the longitudinal pancreatic tumor data studied in this work, each patient has
multimodal imaging data (dual phase contrast-enhanced CT and FDG-PET)
and clinical records at three time points spanning 3–4 years. We design an inte-
grated training & personalization and prediction framework illustrated in Fig. 2.
The imaging data scans of different modalities acquired at different time points
are first registered, after which the tumors are segmented. Intracellular volume
fraction (ICVF) and standardized uptake value (SUV) [9] are also computed.
In the training & personalization stage, all voxel-wise ConvNets- and location-
based features, time intervals, and clinical factors are extracted from any pairs
of two time points (time1/time2 and time2/time3) from group data (patient 1
– patient n) and the pair of time1/time2 from personalized data (the target
patient, denoted as patient n + 1). Next, feature selection, which takes prior
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Fig. 2. Overview of the proposed learning method for predicting tumor growth. The
upper part represents stages of model training (to learn population trend) & person-
alization and the lower part formulates the process of (unseen) data prediction.

knowledge into account, is used to rank these features from hybrid resources.
The top m-ranked features (m = 1, ...,M) are employed to train SVM models
on group data (to capture population trend). These SVM classifiers are then
personalized via the time1/time2 pair of the target patient data to determine
the optimal feature set and model parameters (personalization). In the predic-
tion stage, given the data of the target patient at time2, the imaging and clinical
features are fed into the predictive model to predict and estimate the voxel-wise
tumor region at a future time3. Note that the testing data (i.e., for predicting
time3 based on time2 of the target patient) has never been seen by the predictive
model.

2.1 Image Processing and Patch Extraction

To establish the spatio-temporal relationship of tumor growth along differ-
ent time points, the multi-model patient imaging datasets are registered using
mutual information, and imaging data at different time points are aligned at
the tumor center [9]. Afterwards, three types of information related to tumor
properties are extracted from the multimodal images and preprocessed as a
three-channel image to be fed into ConvNets. Image-specific preprocessing steps
include the following: (1) SUV values from PET images are magnified by 100



428 L. Zhang et al.

followed by a cutting window [100 2600] and then linearly transformed to [0 255];
(2) ICVF values are magnified by 100 (range between [0 100]); and (3) tumor
mask/boundary is obtained by a level set algorithm [9].

As illustrated in Fig. 1, image patches of size s× s centered at voxels around
the tumor region at the current time point are extracted. Patch centers locate
inside or outside of the tumor region at the next time point are labelled as
“1”s and “0”s, respectively, and serve as positive and negative training samples.
The patch center sampling range is restricted to a bounding box of ±15 voxels
centered at the tumor center, given that the pancreatic tumors in this dataset
do not exceed 3 cm (≈30 voxels) in diameter and are slow growing. To improve
the training accuracy and convergence rate of the ConvNet [7], we balance the
class distribution of the training set by proportionally under-sampling the non-
tumor negative patches. The patch-based strategy compensates the small size of
longitudinal tumor dataset.

2.2 Learning a Voxel-Wise Deep Representation

We use AlexNet [7] as our network architecture. AlexNet contains five con-
volutional (conv1 − conv5), three pooling (pool1, pool2, pool5), and two fully
connected layers (fc6−fc7). This network is trained from scratch on all pairs of
time points (time1/time2 and time2/time3) from the group data set. The train-
ing is terminated after a pre-determined number of epochs, where the model
with the lowest validation loss is selected as the final network.

The resulting ConvNet is then used to extract the high-level representation
of voxels/patches. This is achieved by feeding the three-channel SUV-ICVF-
mask image patches into the personalized ConvNet model, where the fc and the
output layers can be treated as the learned deep features. Considering that the
high dimensional deep image features of the fc layers may tend to overwhelm the
low number tumor- and patient-level features if combined directly, the outputs
of the last layer with two nodes are regarded as the final extracted deep features.

2.3 Learning a Predictive Model with Multi-source Features

Feature Extraction and Selection. A general statistical learning concept
is that cues from different sources can provide complementary information for
learning a stronger classifier. Therefore, in addition to deep features, we extract
three other types of features: (1) Time intervals between two imaging time points,
with days as the time unit. (2) Tumor-level features – the Euclidean distance
of the patch center towards its closest tumor surface within the 3D volume for
each voxel. This distance value is positive if the patch center locates inside the
current tumor region and negative otherwise. In addition, the tumor volume is
calculated. (3) Patient-level features, including age, gender, height, and weight.

The SVM RFE technique [4] is adopted to find the most informative features
during the process of model training & personalization. Reflecting the signif-
icance of image-based features for assessing the growth of tumor [9], the two
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deep features are found to be always selected by the SVM RFE model selection.
Finally, time interval is used as a prior feature, as it is necessary for our task.

Predictive Model Training and Personalization, and Testing. Once the
feature set has been fully ranked, the first m features (m=[2, 3, ..., 9]) are
each iteratively added to train a set of (eight) SVM classifiers until all fea-
tures are included. In each iteration, the SVM classifier is trained on sam-
ples from the group data set, and then personalized/validated on the sam-
ples of the personalization data set. The validation accuracies are calculated
and recorded for all classifiers, where the accuracy metric (ACC) is defined by
ACC = TP+TN

TP+FP+FN+TN . The feature set and classifier that maximize the vali-
dation ACC are selected.

To better personalize the predictive model from population trend to the
target patient, we optimize an objective function which measures the agreement
between the predicted tumor volume and its future ground truth volume on the
target patient. To do so, we first apply the predictive model to voxels in the
searching neighborhood (tumor growth zone) of the personalization volume, and
later threshold the classification outputs. The relative volume difference (RVD)
between the predicted and ground truth tumor volumes are computed. As in
[9], the tumor growth zone is set as a bounding box surrounding the tumor,
parametrized with the pixel distances Nx, Ny, and Nz to the tumor surface in
the x, y, and z directions, respectively.

In the testing stage, given the data at time 2 of the target patient, the
predictive model, along with its personalized model parameters, is applied to
predict the label of every voxel in the growth zone at time 3.

3 Experiments and Results

Seven pancreatic neuroendocrine tumors from seven patients (five males and
two female) are studied. These tumors are not treated until they reach 3 cm in
diameter, which is the size threshold for treatment for this particular disease.
The average age, height and weight of the patients at time 1 were 48.6 ± 13.9
years, 1.70 ± 0.13 m, and 88.1 ± 16.7 kg respectively. The time interval between
two time points is 418 ± 142 days (mean ± std.). This dataset is obtained
from [9].

The ConvNet is trained over 30 epochs. The initial learning rate is 0.001, and
is decreased by a factor of 10 at every tenth epoch. Weight decay and momentum
are set to 0.0005 and 0.9. A dropout ratio of 0.5 is used to regularize the fc6 and
fc7 layers. Mini-batch size is 256. The image patch size s is set as 17 pixels due
to the small size of the pancreatic tumors. To accomodate the Caffe framework
used for our ConvNet, the original 17 × 17 image patches are up-sampled to
256 × 256 patches via bi-linear interpolation. A total of 36,520 positive and
41,999 negative image patches is extracted from seven patients. AlexNet is run
on the Caffe platform [6], using a NVIDIA GeForce GTX TITAN Z GPU with
12 GB of memory. The SVM (LIBSVM library [1]) with linear kernel (C = 1)
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is used for both SVM RFE feature selection and SVM classifier training. The
parameters for the tumor growth zone are set as Nx = 3, Ny = 3, and Nz = 3
for prediction speed concern, and we note that the prediction accuracy is not
sensitive to variation of these parameters.

We evaluate the proposed method using a leave-one-out cross-validation at
patient level, which facilitates comparison with the state-of-the-art model-based
method [9] (tumor status at time1 and time2 already known, predict time3).
In each of the 7 validations, 6 patients are used as the group training data to
learn the population trend ([9] does not use other patients’ information), the
time1/time2 and time2/time3 of the remaining patient are used as the person-
alization and the unseen testing data (same as [9]), respectively. We obtain the
model’s final performance values by averaging results from the 7 cross valida-
tion folds. The prediction performance is evaluated using measurements at the
third time point by four metrics: recall, precision, Dice coefficient, and RVD (as
defined in [9]).

In the example shown in Fig. 3, our method achieves both a higher Dice
coefficient and a lower RVD than the model-based method. Note that the perfect

Day 0 Day 168 Day 720

Statistical Learning Prediction
Recall: 86.9%; Precision: 91.8%;

Dice: 89.3%; RVD: 5.2%

Model-Based Prediction [9]
Recall: 73.9%; Precision: 97.8%;

Dice: 84.2%; RVD: 27.9%

(a) Ground truth of tumor growth at different time points.

(b) Prediction at the third time point (Day 720).

Fig. 3. Comparison of the proposed learning based tumor growth prediction to a state-
of-the-art model-based prediction [9]. (a) Segmented (ground truth) tumor contours
and volumes at different time points. (b) Prediction results at the third time point
obtained by learning and model-based techniques (red: ground truth boundaries; green:
predicted tumor boundaries).

Table 1. Performance comparison of our method with the model-based method (EG-
IM framework [9]) on testing set. Results are reported as: mean ± std [min, max].

Recall (%) Precision (%) Dice (%) RVD (%)

Ref. [9] 83.2 ± 8.8 [69.4, 91.1] 86.9 ± 8.3 [74.0, 97.8] 84.4 ± 4.0 [79.5, 92.0] 13.9 ± 9.8 [3.6, 25.2]

Ours 87.9 ± 5.0 [81.4, 94.4] 86.0 ± 5.8 [78.7, 94.5] 86.8 ± 3.6 [81.8, 91.3] 7.9 ± 5.4 [2.5, 19.3]
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values for Dice and RVD are 100% and 0%, respectively. As indicated in Table 1,
our method yields a higher Dice coefficient (86.8 ± 3.6% vs. 84.4 ± 4.0%), and
especially a much lower RVD (7.9 ± 5.4% vs. 13.9 ± 9.8%), than the model-based
method [9], and thus is far more effective in future tumor volume prediction. The
model-based approach in [9] requires ∼24 h for model personalization and ∼21 s
for simulation per patient, while our method merely requires 3.5 h for training
and personalization and 4.8 ± 2.8 min for prediction per patient.

4 Conclusion

In this paper, we have demonstrated that our statistical group learning method,
which incorporates tumor growth patterns from a population trend and a specific
patient, deep image confidence features, and time interval and clinical factors in
a robust predictive model, is an effective approach for tumor growth prediction.
Experimental results validate the relevance of tumor high-level visual informa-
tion coupled tumor- and patient-level features for predicting the spatio-temporal
progression of pancreatic tumors. The proposed method outperforms a state-
of-the-art model-based method [9]. However, it does not consider crucial tumor
biomechanical properties, such as tissue biomechanical strain measurements. We
plan to include such information in future work, where we will combine deep
learning and model-based methods to design an even more comprehensive and
robust predictive model.
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