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Abstract. Deep neural networks have demonstrated very promising
performance on accurate segmentation of challenging organs (e.g., pan-
creas) in abdominal CT and MRI scans. The current deep learning
approaches conduct pancreas segmentation by processing sequences of
2D image slices independently through deep, dense per-pixel masking
for each image, without explicitly enforcing spatial consistency con-
straint on segmentation of successive slices. We propose a new convo-
lutional/recurrent neural network architecture to address the contextual
learning and segmentation consistency problem. A deep convolutional
sub-network is first designed and pre-trained from scratch. The out-
put layer of this network module is then connected to recurrent layers
and can be fine-tuned for contextual learning, in an end-to-end man-
ner. Our recurrent sub-network is a type of Long short-term memory
(LSTM) network that performs segmentation on an image by integrating
its neighboring slice segmentation predictions, in the form of a dependent
sequence processing. Additionally, a novel segmentation-direct loss func-
tion (named Jaccard Loss) is proposed and deep networks are trained
to optimize Jaccard Index (JI) directly. Extensive experiments are con-
ducted to validate our proposed deep models, on quantitative pancreas
segmentation using both CT and MRI scans. Our method outperforms
the state-of-the-art work on CT [11] and MRI pancreas segmentation [1],
respectively.

1 Introduction

Detecting unusual volume changes and monitoring abnormal growths in pan-
creas using medical images is a critical yet challenging diagnosis task. This would
require to dissect pancreas from its surrounding tissues in radiology images (e.g.,
CT and MRI scans). Manual pancreas segmentation is laborious, tedious, and
sometimes prone to inter-observer variability. One major group of related work
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on automatic pancreas segmentation in CT images are based on multi-atlas reg-
istration and label fusion (MALF) [8,15,16] under leave-one-patient-out eval-
uation protocol. Due to the high deformable shape and vague boundaries of
pancreas in CT, their reported segmentation accuracy results (measured in Dice
Similarity Coefficient or DSC) range from 69.6 ± 16.7% [16] to 75.1 ± 15.4% [8].
On the other hand, deep convolutional neural networks (CNN) based pancreas
segmentation work [1,3,10–12,18] have revealed promising results and steady
performance improvements, e.g., from 71.8 ± 10.7% [10], 78.0 ± 8.2% [11], to
81.3 ± 6.3% [12] evaluated using the same NIH 82-patient CT dataset https://
doi.org/10.7937/K9/TCIA.2016.TNB1KQBU.

In comparison, deep CNN approaches appear to demonstrate the noticeably
higher segmentation accuracy and numerically more stable results (significantly
lower in standard deviation, or std) than their MALF counterparts. [11,12] are
built upon the fully convolutional network (FCN) architecture [5] and its vari-
ant [17]. However, [11,12] are not completely end-to-end trained due to their
segmentation post processing steps. Consequently, the trained models may be
suboptimal. For pancreas segmentation on a 79-patient MRI dataset, [1] achieves
76.1 ± 8.7% in DSC.

In this paper, we propose a new deep neural network architecture with recur-
rent neural contextual learning for improved pancreas segmentation. All previous
work [1,11,18] perform deep 2D CNN segmentation on either CT or MRI image
or slice independently1. There is no spatial smoothness consistency constraints
enforced among successive slices. We first follow this protocol by training 2D slice
based CNN models for pancreas segmentation. Once this step of CNN training
converges, inspired by sequence modeling for precipitation nowcasting in [13],
a convolutional long short-term memory (CLSTM) network is further added
to the output layer of the deep CNN to explicitly capture and constrain the
contextual segmentation smoothness across neighboring image slices. Then the
whole integrated CLSTM network can be end-to-end fine-tuned via stochastic
gradient descent (SGD) until converges. The CLSTM module will modify the
segmentation results produced formerly by CNN alone, by taking the initial CNN
segmentation results of successive axial slices (in either superior or interior direc-
tion) into account. Therefore the final segmented pancreas shape is constrained
to be consistent among adjacent slices, as a good trade-off between 2D and 3D
segmentation deep models.

Next, we present a novel segmentation-direct loss function to train our CNN
models by minimizing the jaccard index between any annotated pancreas mask
and its corresponding output segmentation mask. The standard practice in FCN
image segmentation deep models [1,5,11,17] use a loss function to sum up the
cross-entropy loss at each voxel or pixel. Segmentation-direct loss function can

1 Organ segmentation in 3D CT and MRI scans can also be performed by directly
taking cropped 3D sub-volumes as input [4,6,7]. Even at the expense of being com-
putationally expensive and prone-to-overfitting, the result of very high segmentation
accuracy has not been reported for complexly shaped organs [6]. [2,14] use hybrid
CNN-RNN architectures to process/segment sliced CT or MRI images in sequence.

https://doi.org/10.7937/K9/TCIA.2016.TNB1KQBU
https://doi.org/10.7937/K9/TCIA.2016.TNB1KQBU
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Fig. 1. Network architecture: Left is the CBR block (CBR-B) that contains convo-
lutional layer (Conv-L), batch normalization layer (BN-L), and ReLU layer (ReLU-L).
While, each scale block (Scale-B) has several CBR blocks and followed with a pooling
layer. Right is the CLSTM for contextual learning. Segmented outcome at slice τ would
be regularized by the results of slice τ − 3, τ − 2, and τ − 1. For example, contextual
learning is activated in regions with × markers, where sudden losses of pancreas areas
occurs in slice τ comparing to consecutive slices.

avoid the data balancing issue during CNN training between the positive pan-
creas and negative background regions. Pancreas normally only occupies a very
small fraction on each slice. Furthermore, there is no need to calibrate the opti-
mal probability threshold to achieve the best possible binary pancreas segmen-
tation results from the FCN’s probabilistic outputs [1,5,11,17]. Similar segmen-
tation metric based loss functions based on DSC are concurrently proposed and
investigated in [7,18].

We extensively and quantitatively evaluate our proposed deep convolutional
LSTM neural network pancreas segmentation model and its ablated variants
using both a CT (82 patients) and one MRI (79 patients) dataset, under 4-fold
cross-validation (CV). Our complete model outperforms 4% of DSC comparing
to previous state-of-the-arts [1,11]. Although our contextual learning model is
only tested on pancreas segmentation, the approach is directly generalizable to
other three dimensional organ segmentation tasks.

2 Method

Simplifying Deep CNN Architecture: We propose to train deep CNN net-
work from scratch and empirically observe that, for the specific application of
pancreas segmentation in CT/MRI images, ImageNet pre-trained CNN models
do not noticeably improve the performance. More importantly, we design our
CNN network architecture specifically for pancreas segmentation where a much
smaller CNN model than the conventional models [5,17]is found to be most effec-
tive. This model reduces the chance of over-fitting (against small-sized medical
image datasets) and can speed up both training and inference. Our specialized
deep network architecture is trained from scratch using pancreas segmentation
datasets, without being first pre-trained using ImageNet [5,17] and then fine-
tuned. It also outperforms the ImageNet fine-tuned conventional CNN models
[5,17] from our empirical evaluation.
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First, Convolutional layer is followed by ReLU and Batch normalization lay-
ers to form the basic unit of our customized network, namely the CBR block.
Second, following the deep supervision principle proposed in [17], we stack sev-
eral CBR blocks together with an auxiliary loss branch per block and denote
this combination as Scale block. Figure 1 shows exemplar CBR block (CBR-B)
and Scale block (Scale-B). Third, we use CBR block and Scale block as the
building blocks to construct our tailored deep network, with each Scale block is
followed with a pooling layer. Hyper parameters of the numbers of feature maps
in convolutional layers, the number of CBR blocks in a Scale block, as well as
the number of Scale blocks to fit into our network can be determined via a model
selection process on a subset of training dataset (i.e., split for model validation).

2.1 Contextual Regularization

From above, we have designed a compact CNN architecture which can process
pancreas segmentation on individual 2D image slices. However as shown in the
first row of Fig. 2, the transition among the resulted CNN pancreas segmentation
regions in consecutive slices may not be smooth, often implying that segmenta-
tion failure occurs. Adjacent CT/MRI slices are expected to be correlated to each
other thus segmentation results from successive slices need to be constrained for
shape consistence.

To achieve this, we concatenate long short-term memory (LSTM) network
to the 2D CNN model for contextual learning, as a compelling architecture for
sequential data processing. That is, we slice any 3D CT (or MRI) volume into a
2D image sequence and process to learn the segmentation contextual constraints
among neighboring image slices with LSTM. Standard LSTM network requires
the vectorized input which would sacrifice the spatial information encoded in the
output of CNN. We therefore utilize the convolutional LSTM (CLSTM) model
[13] to preserve the 2D image segmentation layout by CNN. The second row
of Fig. 2 illustrates the improvement by enforcing CLSTM based segmentation
contextual learning.

Fig. 2. NIH Case51: segmentation results with and without contextual learning are
displayed in row 1 and row 2, respectively. Golden standards are displayed in white,
and automatic outputs are rendered in red.
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2.2 Jaccard Loss

We propose a new jaccard loss (JACLoss) for training neural network image
segmentation model. To optimize JI (a main segmentation metric) directly in
network training makes the learning and inference procedures consistent and
generate threshold-free segmentation. JACLoss is defined as follows:

Ljac = 1 − |Y+

⋂
Ŷ+|

|Y+

⋃
Ŷ+| = 1 −

∑
j∈Y yj ∧ ŷj

∑
j∈Y yj ∨ ŷj

= 1 −
∑

f∈Y+
(1 ∧ ŷf )

|Y+| +
∑

b∈Y−(0 ∨ ŷb)
(1)

where Y and Ŷ represent the ground truth and network predictions. Respec-
tively, we have Y+ and Y− defined as the foreground pixel set and the back-
ground pixel set, and |Y+| is the cardinality of Y+. Similar definitions are also
applied to Ŷ . yj and ŷj ∈ {0, 1} are indexed pixel values in Y and Ŷ . In practice,
ŷj is relaxed to the probability number in range [0, 1] so that JACLoss can be
approximated by

L̃jac = 1 −
∑

f∈Y+
min(1, ŷf )

|Y+| +
∑

b∈Y− max(0, ŷb)
= 1 −

∑
f∈Y+

ŷf
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∑

b∈Y− ŷb
(2)

Obviously, Ljac and L̃jac are sharing the same optimal solution of Ŷ , with slight
abuse of notation, we use Ljac to denote both. The model is updated by:

∂Ljac

∂ŷj
=

⎧
⎨

⎩

− 1
|Y+|+∑b∈Y− ŷb

, for j ∈ Y+

−
∑

f∈Y+
ŷf

(|Y+|+∑b∈Y− ŷb)2
, for j ∈ Y−

(3)

Since the inequality
∑

f∈Y+
ŷf < (|Y+| +

∑
b∈Y− ŷb) holds by definition, the

JACLoss assigns larger gradients to foreground pixels that intrinsically balances
the foreground and background classes. It is empirically works better than the
cross-entropy loss or the classed balanced cross-entropy loss [17] when segment-
ing small objects, such as pancreas in CT/MRI images. Similar loss functions
are independently proposed and utilized in [7,18].

3 Experimental Results and Analysis

Datasets: Two annotated pancreas datasets are utilized for experiments. The
first NIH-CT-82 dataset [10,11] is publicly available and contains 82 abdominal
contrast-enhanced 3D CT scans. We obtain the second dataset UFL-MRI-79
from [1], with 79 abdominal T1-weighted MRI scans acquired under multiple
controlled-breath protocol. For the case of comparison, 4-fold cross validation is
conducted similar to [1,10,11]. Unlike [11], no sophisticated post processing is
employed. We measure the quantitative segmentation results using dice similarity
coefficient (DSC): DSC = 2(|Y+ ∩ Ŷ+|)/(|Y+| + |Ŷ+|), and jaccard index (JI):
JI = (|Y+ ∩ Ŷ+|)/(|Y+ ∪ Ŷ+|).
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Network Implementation: Hyper-parameters are determined via model selec-
tion inside training dataset. The network that contains five Scale blocks with four
CBR blocks in each Scale block produces the best empirical performance, while
remaining with the compact model size (<3 million parameters). Training folds
are first split into a training subset for network parameter training and a vali-
dation subset for learning hyper-parameters. Note the training accuracy as Acct
after model selection. We then combine training and validation subsets to fur-
ther fine-tune the network until its performance on validation subset converges
to Acct. The average time for model training is ∼3 h on a single GeForce GTX
TITAN.

Analysis on Contextual Regularization: We evaluate the proposed neural
network architectures with and without contextual learning on both CT and MRI
datasets. We first train a network of five Scale blocks with JACLoss. The number
of output feature channels per convolutional layer is set as 64, and we name this
network JAC-64. CLSTM contextual regularization is then applied on JAC-64’s
five Scale block outputs, forming a new extension of RNN-64. RNN-64 is initial-
ized from JAC-64 and trained with enough SGD updates until convergence. We
next investigate the performance impact on increasing the convolutional output
channels from 64 to 128. Similarly, JAC-128 and RNN-128 are used to denote
this variant and its contextually regularized version, respectively. From Table 1,
RNN-enhanced deep models improve upon JAC-64/JAC-128 by 2.0% and 0.9%
in mean DSC on NIH-CT-82. For UFL-MRI-79, RNN-64 achieves 1.8% mean
DSC gain against JAC-64. RNN-128 and JAC-128 produce the best segmenta-
tion results comparably. Figure 3 further shows the segmentation performance
difference statistics, with or without contextual learning. Especially, these cases
with low DSC scores are greatly improved by contextual learning.

Analysis on Jaccard Loss: Figure 4 represents quantitative segmentation
results of the three losses under 4-fold CV. JACLoss achieves the highest mean
DSC, regardless of different segmentation thresholds. FCN or HNN outputs prob-
abilistic image segmentation maps instead of binary masks. Thus an appropriate
probability threshold is required to obtain the final binary segmentation out-
comes. Näıve cross-entropy loss assigns the same penalty on positive and nega-
tive pixels so the probability threshold should be around 0.5. Its class-balanced
version gives higher penalty scores on positive pixels (due to its scarcity), mak-
ing the resulted “optimal” threshold at a relatively higher value. In contrast,
JACLoss can push the foreground pixels to the probability of 1 while remains
being strongly discriminative against background pixels.

Comparison with the State-of-the-Art Methods: Last, we compare our
pancreas segmentation models (as trained above) with the state-of-the-art meth-
ods. Holistically-nested network [17] (HNN) is a CNN architecture that is orig-
inally proposed for semantic edge detection. HNN has been adapted for pan-
creas segmentation in [11] and proved with good performance. We also imple-
ment UNet [9] for universal medical image segmentation problems. As a ref-
erence that HNN and UNet contains 10 times more parameters than
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Fig. 3. 80 cases with/without contex-
tual learning, and sorted left to right
by DSC values of JAC-models with
no contextual learning. Small fluctua-
tions among good cases are normally
resulted from model updating.
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Fig. 4. Thresholded results of mod-
els that are trained with different
loss functions. The proposed Jaccard
loss (JACLoss) performs stable across
thresholds in range [0.05, 0.95].

JAC-64, we choose to fine-tune both networks from pre-trained models. Lower
layers of HNN are transferred from VGG16 while UNet parameters are trans-
ferred from the snapshot released in [9]. Dice similarity coefficient (DSC),
and Jaccard index (JI) results computed from their segmentation outputs are
reported in Table 1, under the same 4-fold cross validation. RNN-128 perfor-
mance best on CT-82, and JAC-128 achieves the best result on MRI-79. For
self-contained content, results reported in [1,12,18] are also included in Table 1.
Note that our method development is orthogonal to the principles of “coarse-to-
fine” pancreas location and detection [12,18]. Better performance for pancreas
segmentation may be achievable with the combination of both methodologies.
Figure 5 displays exemplars of reconstructed segmentation results from NIH-CT-
82 dataset.

Table 1. Comparison with the state-of-the-art methods under 4-fold cross
validation: JAC and RNN represent networks trained with JACLoss and contextual
regularization, respectively. −64 and −128 represent numbers of convolutional output
channels. We show dice similarity coefficient (DSC), jaccard index (JI) as mean ±
standard dev. [worst, best]. The best result on CT and MRI are reported by RNN-128
and JAC-128 with bold font.

Method NIH-CT82 MRI-79

DSC(%) JI(%) DSC(%) JI(%)

UNet [9] 79.7 ± 7.6 [43.4, 89.3] 66.8 ± 9.60 [27.7, 80.7] 79.9 ± 7.30 [54.8, 90.5] 67.1 ± 9.50 [37.7, 82.6]

HNN [17] 79.6 ± 7.7 [41.9, 88.0] 66.7 ± 9.40 [26.5, 78.6] 75.9 ± 10.1 [33.0, 86.8] 62.1 ± 11.3 [19.8, 76.6]

JAC-64 80.3 ± 9.0 [35.8, 90.2] 67.9 ± 10.9 [21.8, 82.1] 76.3 ± 12.9 [6.30, 88.8] 63.1 ± 14.0 [3.30, 79.9]

JAC-128 81.5 ± 7.2 [56.3, 90.1] 69.3 ± 9.50 [39.2, 82.0] 80.5 ± 6.70 [59.1, 89.4] 67.9 ± 8.90 [41.9, 80.9]

RNN-64 82.3 ± 6.7 [49.8, 90.2] 70.4 ± 8.60 [33.1, 82.2] 78.1 ± 9.40 [39.5, 90.0] 64.9 ± 11.4 [24.6, 81.8]

RNN-128 82.4 ± 6.7 [60.0, 90.1] 70.6 ± 9.00 [42.9, 81.9] 80.4 ± 6.60 [58.9, 90.0] 67.7 ± 8.70 [41.8, 81.8]

Roth et al. [12] 81.3 ± 6.3 [50.6, 88.9] 68.8 ± 8.12 [33.9, 80.1] – –

Zhou et al. [18] 82.3 ± 5.6 [62.4, 90.8] – – –

Cai et al. [1] – – 76.1 ± 8.7 [47.4, 87.1] –
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Fig. 5. 3D visualization of pancreas segmentation results: human annotation
shown in golden and computerized segmentation displayed in green. The DSC are 90%,
75%, and 60% for three examples from left to right, respectively.

4 Conclusion

In this paper, we use a new deep neural network architecture for pancreas seg-
mentation, via our tailor-made convolutional neural network followed by con-
volutional LSTM to regularize the segmentation results on individual image
slices, unlike the independent process assumed in previous work [1,11,12,18].
The contextual regularization permits to enforce the pancreas segmentation spa-
tial smoothness explicitly. Combined with the proposed JACLoss function for
CNN training to generate threshold-free segmentation results, our quantitative
pancreas segmentation results improve the previous state-of-the-art approaches
[1,11] on both CT and MRI datasets.
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