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ABSTRACT 

We propose an automated platform for extra-coronary 

calcification detection on low dose CT scans. We utilize 

faster regional convolutional neural networks (R-CNN) to 

directly detect calcifications at the lesion-level without 

performing vessel extraction. To segment detected 

calcifications at the voxel-level, we employ holistically 

nested edge detection (HED). CT scans of 112 vasculitis 

patients and 3219 images with labeled calcifications were 

used to develop and evaluate our method. By employing a 

two-class faster R-CNN, the average precision (AP) 

increased from 49.2% to 84.4% for calcification 

detection. In addition, sensitivity of 85.0% at 1 false 

positive per image was observed. The Dice Similarity 

Coefficient (DSC) for calcification segmentation using 

HED (0.83±0.08) was significantly better (p<<0.01) than 

the traditional threshold-based method (0.59±0.26). 

 

Index terms – Calcification, plaque, region proposal, 

CNNs, HED  

1. INTRODUCTION 

Vascular calcification is an important clinical 

manifestation of atherosclerosis, which is the primary 

cause of heart disease and stroke and is implicated in 

about 50% of all deaths in westernized societies [1].  

The disease is characterized by a progressive 

thickening of the arterial wall due to the buildup of lipids, 

macrophages, fibrous elements, and debris. As the 

condition progresses, the arterial wall will present with 

calcific plaques [2]. These calcified plaques can obstruct 

blood flow and signify the later stages of atherosclerosis 

[3].  In clinical practice, there is a need to characterize 

atherosclerotic plaques to determine the status and disease 

progression.  

Many works have been proposed for coronary artery 

calcification detection in cardiac CT scans. However, 

there are few works about extra-coronary calcification 

detection [4, 5]. In addition to serving as a way to identify 

and classify the progression of coronary disease, extra-

coronary plaque detection and quantification may also be 

a relevant biomarker in association studies with other 

disorders such as kidney disease and cancers [6, 7]. In the 

current workflow, each CT image is manually examined 

to detect plaque instances, making the process tedious and 

time consuming. Therefore, computer-aided calcification 

detection could greatly reduce the radiologists’ workload 

and could be employed as a first or second reader for 

improved disease assessment. 

In the past, vessel extraction was commonly required 

for computer-aided calcification detection. However, 

automatic vessel extraction is challenging on non-contrast 

or low dose CT scans. Figure 1 shows two calcified 

plaques on low dose CT scans. 

  
Figure 1. Examples of calcified plaques (red arrows) on 

abdominal (left) and pelvic (right) CT scans.  

Recent breakthroughs in object detection in computer 

vision have been driven by the success of deep 

convolutional neural networks (CNNs) [8]. These 

hierarchical features have been found to be more efficient 

for object detection and recognition than hand-crafted 

features such as SIFT [9] and HOG [10]. CNNs do not 

require hand-crafted features, making them good 

candidates for sophisticated clinical applications such as 

lymph node detection in CT images [11], pancreas 

segmentation in CT images [12], and brain segmentation 

in MR images [13]. 

This paper presents an automated method for extra-

coronary calcification detection on low dose CT scans. 

We leverage the development in faster regional 

convolutional neural networks (R-CNN) [8] to directly 

detect calcifications on low dose CT scans. Furthermore, 

we accomplish this without needing to perform vessel 

extraction. For detected calcifications, we utilize the 

holistically nested edge detection (HED) [14] for 
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calcification segmentation, a crucial component of the 

subsequent quantitative analysis. 

2. METHODS 

2.1 Plaque detection by faster R-CNN 

In this work, we use the recently advanced faster R-CNN 

for plaque detection. The faster R-CNN employs an 

efficient single-stage training process and jointly learns to 

classify plaque and refine their spatial locations.  

Calcification detection by faster R-CNN has two 

steps (Figure 2). For each 2D image, region proposals are 

first generated by region proposal networks (RPN). A 

forward pass is performed on the entire input image to 

create one feature map. The features of region proposals 

are computed by the region-of-interest (ROI) projection in 

the feature map. Then, each region proposal is jointly 

classified and refined by softmax classifier and bounding 

box regressor.  

 
Figure 2: Calcification detection by faster R-CNN.  

2.1.1 Region proposal network 

The RPN was trained end-to-end using backpropagation 

and optimized with stochastic gradient descent (SGD). In 

each SGD iteration, a mini-batch was constructed for loss 

optimization. Each mini-batch has 128 positive samples 

and 128 negative samples from the same image. Positive 

samples are defined as all ground-truth bounding boxes of 

the plaque and the region proposals with IoU (intersection 

over union) ≥0.7. Negative samples are defined as the 

region proposals with IoU ≤ 0.1. Caffe [15] 

implementation of a 16 layer VGG net  [16] was used in 

this work. The RPN is initialized by an ImageNet pre-

trained model [17] . VGG net is fine-tuned with a learning 

rate of 0.001, a weight decay of 0.0005, and a momentum 

of 0.9 for 10k mini-batches on our plaque dataset. 

2.1.2 Detection networks 

We use Fast R-CNN [18] as the detection network in our 

algorithm. A 4-step training method [8] is utilized to learn 

the shared convolutional layers between the RPN and 

detection network. (1) The RPN is initialized with a pre-

trained model (using ImageNet). All layers are fine-tuned 

for region proposal generation. (2) A separate detection 

network is also initialized with a pre-trained model (using 

ImageNet) and is trained using the proposals generated in 

the first step. (3) The RPN was initialized by the detection 

network. The shared convolutional layers are fixed and 

the layers of RPN are fine-tuned. (4) Retaining the shared 

convolutional layers, the fully connected layers of the 

detection network are fine-tuned. In this way, RPN and 

detection networks form a unified network by sharing the 

same convolutional layers. 

2.1.3 Training strategy 

Without prior anatomical constraints, i.e. vessel extraction, 

other negatives such as bones (e.g. ribs) and kidney stones 

are challenging to distinguish from calcified plaques. To 

reduce these false positives, we use two sequential faster 

R-CNNs for calcification detection. The first faster R-

CNN (Faster R-CNN1) focuses on detecting and 

separating plaque from all negatives. The second faster R-

CNN (Faster R-CNN2) distinguishes among plaque, 

plaque-like, and all other negatives. Figure 3 shows the 

overview of sequential faster R-CNNs trained for plaque 

detection. 

 
Figure 3: Faster R-CNN1 is trained first, using the manually 

labeled plaques only (orange boxes). This CNN discards the 

negative objects such as muscle and fat. Faster R-CNN2 is 

trained using two classes, the manually labeled plaques and the 

plaque-like objects (red boxes) those have high prediction value 

from Faster R-CNN1. 
. 

The two faster R-CNN are trained in sequence. Faster 

R-CNN1 is trained first, using one class, the manually 

labeled plaques (orange boxes in Figure 3). This CNN 

discards the negative objects such as muscle and fat and 

detects plaque and plaque-like objects. Subsequently, 

Faster R-CNN2 is trained using two classes: the manually 

labeled plaques and the plaque-like objects (red boxes in 

Figure 3) which have high prediction value from Faster 

R-CNN1. 

During testing, the trained Faster R-CNN2 is used for 

plaque detection. We run RPN on the test image to extract 

around 200 region proposals. For each region proposal, 

the forward pass outputs a class posterior probability and 

a set of predicted bounding-boxes. We then perform non-

maximum suppression independently for each class for 

final detections. 

2.2 Plaque segmentation 

Once the location of the plaque has been detected from the 
prior step, segmentation is performed to isolate the plaque 
voxels.  



2.2.1 Threshold-based approach 

In clinical practice, voxels exceeding 130 Hounsfield units 

(HU) are classified as calcified tissue [19]. Regions with 

higher HU values will be correspondingly weighted to 

represent the grade of the plaque. 

With this in mind, we considered employing a 

threshold-based approach for calcification segmentation in 

voxel-level. In this method, a global threshold (130 HU) 

was first applied to the detected region. The resulting 

image was subsequently processed with Sobel filtering and 

border removal. Finally, the image underwent 

morphological filling and erosion to yield a segmentation 

of calcification.  

2.2.2 HED 

For comparison, we also utilize the deep learning-based 

method, HED, for calcification segmentation. HED 

utilizes CNNs to hierarchically learn the relevant features 

for segmentation. Furthermore, these features are used to 

produce edge maps which are progressively refined in a 

structured manner. As a result, the deeply supervised HED 

framework allows for better discrimination in edge and 

object boundary detection problems. This technique has 

proven to be successful in advancing the state-of-the-art in 

the BSD500 and NYU Depth segmentation benchmark 

datasets [17]. 

We implement our framework using the Caffe library 

and build from the default HED implementation. Our 

model parameters follow the configuration used in [18]. 

HED is fine-tuned with a learning rate of 1e-6, a weight 

decay of 0.0001, and a momentum of 0.9 for 10k mini-

batches on our plaque dataset. The training phase takes 

only 30 minutes on a K40 GPU since we only trained 

HED using the cropped images (plaques within the 

bounding box). 

3. RESULTS 

3.1 Dataset 

CT scans of 112 patients with vasculitis are used to 

develop and evaluate our method. For each patient, 

vascular calcifications were considered along the aorta, 

aortic arch, coronary, carotid, subclavian, innominate, 

common iliac, and common femoral arteries. These 

lesions were manually labeled on CT scans by a 

radiologist. Thus our dataset has 3219 images with 

labeled calcifications in total. 75% of this dataset (84 

patients with 2119 plaques) is randomly selected. These 

patients constitute a training set for faster R-CNN for 

plaque detection and for HED for plaque segmentation. 

The remaining 28 patients with 1100 plaques form the test 

set for evaluation.  

3.2 Plaque detection 

Figure 4 shows the precision-recall curve and FROC 

curve of our calcification detection on 28 patients. The 

detection average precision (AP) using Faster R-CNN2 is 

increased to 84.4% from 49.2% using Faster R-CNN1. 

The system using Faster R-CNN2 can achieve an 85.0% 

sensitivity at 1 false positive per image. Some true cases, 

false positives, and missed detections using Faster R-

CNN2 are shown in Figure 5. 

 
Figure 4. Precision-recall curves (top) and FROC curves of 

plaque detection on test set (bottom). Isobars in (top) are F 

scores. 
 

3.3 Plaque segmentation 

Dice Similarity Coefficient (DSC) [20] is used as a 

measure of segmentation accuracy for evaluation. The 

DSC for plaque segmentation using HED (0.83 ± 0.08) is 

significantly better (p<<0.01, paired t-test) than the 

segmentation using the threshold-based method (0.59 ± 

0.26). Figure 6 shows one example of plaque 

segmentation by using two approaches. The DSC using 

HED (0.79) is much higher than the threshold-based 

approach (0.57). In this case, thresholding could not 

effectively separate the plaque and the adjacent vertebra. 

In such situations, plaque segmentation via deep learning 

based methods such as HED can significantly outperform 

conventional techniques. 

4. CONCLUSION 

Convolutional neural networks have been applied to 

detect and segment the vascular calcifications on low dose 

CT scans without vessel extraction. The experimental 



results reveal high detection sensitivity at a low false 

positive rate and accurate segmentation. 

 
Figure 5. Calcification detection examples: true positives 

(green), false positives (red) and missed detections (yellow). 

 
Figure 6. Example of plaque segmentation. Detected plaques (red 

boxes), manually-labeled plaque segmentations (white), plaque 

segmentations by threshold-based approach (red) and 

segmentation by HED (green). 
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