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ABSTRACT 

 
Automatic MR whole prostate segmentation is a challenging 
task. Recent approaches have attempted to harness the 
capabilities of deep learning for MR prostate segmentation 
to tackle pixel-level labeling tasks.  Patch-based and 
hierarchical features-based deep CNN models were used to 
delineate the prostate boundary.  To further investigate this 
problem, we introduce a Holistically-Nested Edge Detector 
(HED) MRI prostate deep learning segmentation and 3D 
surface reconstruction model that facilitate the registration 
of multi-parametric MRI with histopathology slides from 
radical prostatectomy specimens and targeted biopsy 
specimens.  Application of this technique combines deep 
learning and computer aided design to provide a generalized 
solution to construct a high-resolution 3D prostate surface 
from MRI images in three orthogonal views.  The 
performance of the segmentation is evaluated with MRI 
scans of 100 patients in 4-fold cross-validation. We achieve 
a mean Dice Similarity of 88.6%.    
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1. INTRODUCTION 
 
Multi-parametric magnetic resonance imaging (MRI) 
improves the clinical diagnosis and staging of prostate 
cancer.  The prostate gland boundary from three-
dimensional MRI can be segmented to generate a surface 
model which informs the clinician of the whole prostate 
volume. In addition to whole prostate volume, the surface 
model can be used to correlate prostate MRI to histology 
specimens.  Shah et al. used patient-specific molds (PSM) 
created from prostate surface models to correlate MRI to 
histopathology and developed a decision support system for 
generating cancer probability maps from multi-parametric 
MRI [1]. The PSM is created using prostate surface models 
from MR images of each patient obtained prior to surgery. 

The prostate margin segmentation was performed manually. 
Since the multi-slice MRI scans were obtained with thick 
slices relative to the in-plane resolution (due to scan time 
constraints), a surface model generated from only one view, 
such as the axial view, would give poor resolution along the 
slice direction.  For the PSM, this limitation was overcome 
by segmenting the prostate in three orthogonal MRI scans 
and combining them either as binary masks or as clouds of 
points before reconstructing the surface.  The same prostate 
surface model could also be used in another method to 
register MRI with real time trans-rectal ultrasound (TRUS) 
in order to target lesions during biopsy [2].  An automated 
segmentation and surface reconstruction approach would 
reduce the amount of tedious manual labor needed to 
segment multiple MR images. 
     In previous works, only a few methods were investigated 
for MRI prostate segmentation in the deep learning domain.  
Guo et al. [3] proposed a deformable segmentation method 
to learn latent features by a stacked sparse auto-encoder and 
then used a sparse patch matching to infer the prostate 
boundary.  Fausto et al. [4] presented a 3D volumetric deep 
CNN to model an axial image and optimize the training with 
a Dice coefficient objective function.  It utilized a V-Net, a 
3D based convolutional and de-convolutional architecture to 
learn the 3D hierarchical features.  Liao et al. [5] proposed 
representation learning, a stacked independent subspace 
analysis network that is adopted to learn the most effective 
features in a hierarchical and unsupervised manner.  All the 
previously proposed methods focused on the MR axial 
prostate images alone.  We investigate the capability to 
apply the HED deep learning architecture to low resolution 
orthogonal volumetric MR prostate images, which leverages 
the 2D HED deep learning model to all the axial, sagittal, 
and coronal images, and then generates the final higher 
resolution 3D surface from the segmented contours. 
       As compared to works described above, our approach 
shows that it is applicable to apply the HED pixel level 
labeling model to axial, sagittal and coronal images so that 
one can form an end-to-end trainable system for MR 



prostate image segmentation which combines the strengths 
of deep learning and 3D surface reconstruction to extract a 
high resolution surface from thick-sliced MRI. 3D deep 
CNNs model [4] requires substantially large amount of 
memory for 3D activation maps and computation during 
training and testing phases, which are prohibitively 
expensive.   The orthogonal volumetric HED 2D deep 
CNNs model only deals with 2D hierarchical features and 
2D activation maps.  The processing time is much faster 
than the 3D volume based deep CNNs model.    
 

2. METHODS 
 
      The proposed model is composed of three major 
building blocks: 1) fully automatic Holistically-Nested 
Networks volumetric segmentation model using orthogonal 
MRI prostate images; 2) Ball-pivoting and Poisson based 
3D surface reconstruction model to create a high resolution 
3D surface from low MRI spatial resolution along the z-
axis; 3) 3D prostate mold creation and 3D printing for 
pathology biopsy analysis. The schema of the proposed 
method is shown in Figure 1.    
 

 
             Figure 1.  Schema of the proposed pipeline  
 
      The input data are MR images. The T2-weighted MR 
images of the entire prostate were obtained in three 
orthogonal planes (sagittal, axial and coronal) each at the 
scan resolution of 0.2734x0.2734x3.0 mm3; field of view 
140 mm; image slice dimension 512x512.    The center of 
the prostate is the focal point for the MRI scan.    
 
2.1. HED volumetric segmentation on orthogonal images   
 
    During the training phase, we extracted 2D slices from 
3D MR orthogonal images as well as corresponding binary 
mask slices from the annotations for the training data.  In 
this work, we explicitly learn the prostate interior binary 
mask labeling models via HED.  Each orthogonal image 
(axial, sagittal, coronal) is trained with its own HED model. 
The three orthogonal models combined together constitute 
the volumetric segmentation model of prostate MRI.    
     The HED was first proposed by [8] as a deep learning 
method for detecting edge and object boundaries in natural 
images.  It emphasizes an end-to-end edge detection system, 
a system inspired by fully convolutional neural networks 
with additional deep supervision on top of VGGNet [9].  
Thus, images of different size can be handled by HED via 
training and detection phases. The HED networks comprise 
a single stream deep network with multiple side-outputs 

(Figure 2), and the side-outputs are inserted after each 
convolutional layer.  The outputs of HED are multi-scale 
and multi-level with the side-outputs plane size becoming 
smaller and receptive field size becoming larger.  Each side-
output produces a corresponding edge map at a different 
scale level, and one weighted-fusion layer is added to 
automatically learn how to combine outputs from multi-
scale, as shown in Figure 2.  The entire network is trained 
with multiple error propagation paths (dashed lines).  
Ground truths are used at each of the side-output layers to 
compensate the weak edges lost and play an important role 
in supervised learning.  The HED architecture is a simple 
feed forward neural network that produces multi-scale 
outputs in a single path. With the per-pixel labeling cost 
function [8], the HED can be effectively trained using only 
several thousand annotated image pairs. This enables the 
automatic learning of rich hierarchical feature 
representations (contexts) that are critical in resolving 
spatial ambiguity in the prostate segmentation task. 
 

    
   Figure 2.  HED architecture for axial images training (adapted 
from [8] with permission) 
    
A HED network has M side-output layers, where each side-
output layer functions as a classifier with corresponding 
weights  ݓ ൌ ሺ	ݓଵ,…	ݓெሻ.		  All standard network layers 
parameters are denoted as W. The object function of the M 
side-output layers is,  
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ࣦ௦௜ௗ௘ denotes an image-level loss function for side-outputs, 
computed over all pixels in a training image pair X and Y 
(MR image and binary mask). The prostate interior map 
prediction ෠ܻ௦௜ௗ௘ ൌ መሺ݉ሻ௦௜ௗ௘ሻܣሺߪ	  can be obtained at each 
side-output layer, where ܣመሺ݉ሻ௦௜ௗ௘ are the activation of the 
side-output layer ݉.  The loss function at the fusion layer 
ࣦ௙௨௦௘ is defined as, 
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where ෠ܻ௙௨௦௘ ≡ ∑	ሺ	ߪ	 ݄௠

஺ೞ೔೏೐ெ
௠ିଵ ሻ with ݄ ൌ ሺ݄ଵ,… , ݄ெሻ	being 

the fusion weight.    ݐݏ݅ܦሺ. , . ሻ is the distance between the 
fused predictions and the ground truth label map, which is 
set to be cross-entropy loss.  The overall objective loss 
function of HED is minimized via back propagation with 
stochastic gradient descent. 
 
ࣦுா஽	ሺܹ,ݓ, ݄ሻ ൌ ሻݓ,ࣦ௦௜ௗ௘ሺܹ	ሺ݊݅݉݃ݎܽ ൅ ࣦ௙௨௦௘ሺܹ,ݓ, ݄ሻ ) 
               (3) 

 
During testing phase, with new image ܺ, the prostate binary 
mask prediction maps ෠ܻ௙௨௦௘  and ෠ܻ௦௜ௗ௘  are generated from 
both side-output layers and the weighted fusion layer.   
 .denotes the edge maps produced by HED networks ܰܰܪ
 

    ൫	 ෠ܻ௙௨௦௘, ෠ܻ௦௜ௗ௘
ሺଵሻ … ෠ܻ

௦௜ௗ௘
ሺହሻ ൯ ൌ ,൫ܺܰܰܪ ሺܹ,ݓ, ݄ሻ൯.	       (4)  

       
After HED prediction, the ෠ܻ௙௨௦௘ layer generated probability 
map is used to search the final contour.  The HED-generated 
fusion layer probability map sometimes contains isolated 
components that present a coarse level prostate prediction.  
A morphology filter runs against the probability map to 
remove noise and searches for the largest region to represent 
the prostate.  Then, it generates the prostate shape binary 
mask from the probability map and converts the mask to the 
final VOI contour.  The tested image fused with probability 
map is shown in Figure 3. 
 

      
Coronal 

         
Sagittal 

     
Axial 

Figure 3. Probability map.  Column 1: Original MR images. 
Column 2: HED predicted probability map.  The dark red region 
represents the higher likelihood of the segmented prostate shape, 
which is used to delineate the final prostate contour. Column 3: 

Fused image from original MR image and predicted probability 
map. 
 
2.2. Ball-pivoting and Poisson 3D surface reconstruction 
 
   The HED automatic prostate segmentation generates VOIs 
for each axial, sagittal and coronal image.  Each VOI 
contour is generated from the high resolution xy plane in 
each view.  The distance between VOI contours is large due 
to the low resolution along the z axis on each orthogonal 
image.  We select 100 points to represent each VOI contour 
and merge the resulting three VOIs in the DICOM space, 
forming a rough point cloud.  The point cloud reflects the 
high resolution density from each image, and compensates 
for the low z-axis resolution.  The Ball-Pivoting and Poisson 
surface reconstruction algorithms are run against the point 
cloud to construct the high resolution prostate 3D surface.  
     The Ball-Pivoting Algorithm (BPA) [10] takes the point 
cloud as input without normal information to build a rough 
surface. The point cloud merged from the three VOIs has 
low density sample points due to the low z-axis resolution. 
As a result, the BPA generated mesh might leave holes or 
non-smooth patches on the surface.  Thus, the Poisson 
surface reconstruction algorithm is used to remove bumpy 
patches and to create the final smooth surface. The Poisson 
algorithm (PA) utilizes an implicit function to approximate 
the surface as a solution to a Poisson equation [11].  Figure 
4 demonstrates the Ball-Pivoting and Poisson surface 
reconstruction results respectively.   
 

           
(1) HED VOI contours             (2) BPA                        (3) PA 
 Figure 4. Ball-Pivoting and Poisson surface reconstruction. (1) 
After HED segmentation, merging the VOIs contours from axial, 
sagittal, and coronal images to constitute a point cloud. (2) Ball 
pivoting surface reconstruction generated bumpy surface. (3) 
Poisson surface reconstruction generated final smooth surface. 
 
2.3. 3D prostate mold creation and 3D printing  
 
   The Java-based open source MIPAV [7] visualization 
software uploads the final prostate surface reconstruction.  
This surface is decimated and converted to a 
stereolithography (STL) surface file format for subsequent 
semi-automated design and fabrication of the physical 3D 
prostate mold.   The prostate mold design process utilizes 
the STL file and other MR imaging setup parameters to 
generate a surrounding box with both the prostate void and 
integrated knife slots spaced 6mm apart.   The position and 
orientation of the prostate void relative to the knife slots 
establishes spatial congruence between the resulting tissue 
blocks and MRI slices.   The prostate mold (Figure 5) is 
fabricated via 3D printing.   As a result of sectioning the 



prostate in the custom mold, the tissue blocks (and 
subsequent histological sections) are more directly 
applicable in the validation of mpMRI as a means of 
prostate tumor localization for clinical diagnosis and 
treatment planning.      
 

    
         Figure 5.   3D mold creation and 3D printing  
 

3. RESULTS 
 
    The HED segmentation method performance was 
evaluated with 100 prostate MRI scans per view.  Four-fold 
cross validation comparing segmentation performance 
against the ground truth binary masks was conducted. The 
segmentation performance (Table 1) was evaluated with 1) 
Dice similarity coefficient (DSC), 2) Hausdorff distance 
(mm), and 3) Average Symmetric Surface Distance (SSD, 
mm).   The HED deep learning segmentation model elevates 
the mean DSC to 88.6%, and mean Hausdorff distance to 
17.43 mm.   All the metrics are calculated without trimming 
any ending contours or cropping data to the [5%, 95%] 
probability interval to avoid outliers for distance based 
measure.   The mask based performance measure uses the 
EvaluateSegmentation tool [13] to compare the ground truth 
and segmented masks.  Manual reference segmentations 
drawn by the experts approximate the ground truth.   For 
volumetric measure, the 3D surface volume is calculated 
from the binary surface volumetric mask by multiplying the 
total surface volumetric voxels with a single voxel volume.  
MIPAV [7] 3D visualization and surface volume tool is 
used to conduct the volumetric measure.  The absolute 3D 
surface volume difference is computed by หܸ݈݋௦௘௚ െ /	௚௧ห݈݋ܸ
 ௚௧.  The resulting mean 3D surface volume difference is݈݋ܸ	
11.4%.   Figure 6 illustrates the 3D surfaces overlapping 
between proposed method generated surface and the ground 
truth surface of one patient.   Noticeable volume differences 
are shown on top and bottom of the coronal and sagittal 
views.  The HED orthogonal volumetric segmentation 
model generates a comparable result to other deep learning 
based segmentation methods [3, 4, 5] in the literature.  The 
higher Hausdorff distance primarily results from not 
trimming ending contours.  The proposed method facilitates 
the HED deep learning segmentation model to axial, coronal 
and sagittal images of MRI prostate.   Even in case that 
HED generates erroneous points on the 2D contour, the 3D 
BPA ball rolling mechanism can effectively correct the 
errors in 2D segmentation, and ensure approximate 3D 
surface creation.  By merging the axial, sagittal and coronal 
VOIs contours into a point cloud in DICOM space, the low 

resolution issue from each orthogonal view’s slice direction 
can be essentially eliminated.   The Ball-pivoting and 
Poisson algorithms finally build a smoothed high resolution 
3D prostate surface for 3D mold printing.  The processing 
time of one test image including HED orthogonal 
segmentation and 3D surface reconstruction is under one 
minute, which is significantly better than other literature 
approaches.   
 
  DSC Hausdorff[mm] SSD[mm] 3D Vol diff 
axial 88.98% 14.53 0.187  
sagittal 88.57% 20.24 0.278  
coronal 88.26% 17.54 0.254  
mean 88.6% 17.43 0.24 11.4% 

Table 1. HED segmentation results 
 

 

  

 
Figure 6.  3D surface comparison (red: ground truth, yellow: HED 
segmentation and surface reconstruction) 
 

4. CONCLUSION 
 
A novel method for prostate MRI segmentation and surface 
reconstruction was presented in this paper.  Unlike the 
previous deep learning based methods, the proposed model 
takes advantage of HED deep learning to provide a robust 
segmentation mechanism, which is simple, efficient and 
fast.   The BPA and PA surface reconstruction algorithms 
ensure the rapid prototyping of high resolution 3D prostate 
surface from thick-slice orthogonal MRI.  The primary 
contributions of the proposed method are the automatic 
segmentation pipeline, enabling shorter analysis times of 
axial, coronal, and sagittal patient images, and more 
importantly, increased stability from the HED deep learning 
hierarchical feature based segmentation.  The experimental 
results demonstrate the promising of applying HED for 3D 
orthogonal volumetric segmentation of prostate MRI.  The 
distributed segmentation and reconstruction pipeline 
provides a unified tool under MIPAV for generating prostate 
surface models that can be used to improve the correlation 
of prostate MRI to histopathology [2] and fusion of MRI 
with TRUS for targeted biopsy [12].  
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