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ABSTRACT

Availability and accessibility of large-scale annotated medi-
cal image datasets play an essential role in robust supervised
learning of medical image analysis. Missed labeling of re-
gions of interest is a common issue on existing medical im-
age datasets due to the labor intensive nature of the annota-
tion task which requires high levels of clinical proficiency.
In this paper, we present a segmentation based label propa-
gation method to a publicly available dataset on interstitial
lung disease [3], to address the missing annotation challenge.
Upon validation from an expert radiologist, the amount of
available annotated training data is largely increased. Such
a dataset expansion can can potentially increase the accura-
cy of Computer-aided Detection (CAD) systems. The pro-
posed constrained segmentation propagation algorithm com-
bines the cues from the initial annotations, deep convolution-
al neural networks and a dense fully-connected Conditional
Random Field (CRF) that achieves high quantitative accuracy
levels.

Index Terms— Segmentation Label Propagation, Dense
Conditional Random Field, Convolutional Neural Network,
Interstitial Lung Disease, Multi-class Labeling

1. INTRODUCTION

Interstitial lung disease (ILD) is a class of more than 150
chronic lung disorders. Most of them cause progressive s-
carring of lung tissues and eventually affect breathing. High
resolution computed tomography (HRCT), as a non-invasive
imaging method with sub-millimeter resolutions, is consid-
ered the gold standard imaging protocol is ILD diagnosis.
The appearance and quantification of the types of lung tis-
sue patterns in HRCT are very informative for the diagnosis
of an ILD. The visual illustration of the most common lung
tissue patterns are depicted in Fig. 1. However, interpreting
pulmonary HRCT images can still be a challenge for trained
chest radiologists and lung specialists. The diagnosis may
result in errors by omission or confusion of diverse patho-
logical lung tissue types. In order to improve the accuracy
and efficiency of diagnosis, computer-aided detection (CAD)

This research effort is supported by NIH intramural research program.
Acknowledgment to Nvidia Corp. for donation of K40 GPUs.

systems are actively studied for the quantitative identification
of ILD patterns. Most of the previous work assign a single
label to an image patch (usually of size 32 × 32 ) extracted
from manually drawn Regions of Interests (ROI) from lung
CT slices [2, 3, 9, 10]. Recently, a holistic image classifica-
tion method is presented to address this problem from a more
clinically practical setting [4]. Studies generally assume that
there is only one label for every image patch or image slice
even multiple ILD can commonly appear in a single CT slice.

Supervised learning, the most common technique for in-
tegrating domain knowledge, usually needs the manual an-
notation from expensive medical experts to assign a label to
every pixel. This hinders the learning scalability both in the
amount of training data and in the number of classes. On the
other hand, we have witnessed the success of many applica-
tions in computer vision and medical imaging analysis when
a large-scale well annotated dataset is available [7]. The pub-
licly available and widely used ILD dataset [3] is arguably
the most comprehensive ILD datasets to-date. As shown in
Fig. 1, we find that only less than 15% of the lung region in
the pixel coverage measure is labeled, which significantly re-
stricts the number of available training image pixels, patches
or data. Assigning semantic labels to each pixel of a CT im-
age is tedious, time consuming and error-prone, or simply is
not affordable and feasible for a large amount of patients.

Therefore automated image annotation or labeling meth-
ods are needed to assist doctors during the labeling process.
In an ideal framework, computerized algorithms would com-
plete most of the tedious tasks, and doctors would merely
validate and fine-tune the results, if necessary. In this paper,
we propose a segmentation propagation algorithm that com-
bines the cues from the initial or partial manual annotations,
deep convolutional neural networks (CNN) based single pix-
el classification and formulate into a constrained dense fully-
connected Conditional Random Field (CRF) framework. Our
main technical novelties are the constrained unary (manu-
ally labeled pixels are hard-enforced with their original ILD
image labels; pixels outside of lung are considered as hard-
encoded background; unlabeled lung pixels are the key sub-
jects to be assigned ILD labels using our method) and pair-
wise terms (message passing is only allowed for any pair
of lung image pixels) and their efficient implementation in
[6]. The proposed method is applicable to other problem-



Fig. 1. Visual aspects of the most common lung tissue pat-
terns in HRCT axial slices. Infected regions are annotated
with different colors in the publicly available dataset [3]. (A)
Emphysema (EM). (B) Gound Glass (GG). (C) Fibrosis (FB).
(D) Micronodules (MN).

s as a generic semi-supervised image segmentation solution.
This work is partially inspired by interactive graph-cut im-
age segmentation [1] and automatic population of pixelwise
object-background segmentation from manual annotations on
ImageNet database [5].

Specifically, we explore the possible ways to propogate
the ILD labels from the limited manually drawn regions to the
whole lung slice as a per-pixel multi-class image segmenta-
tion and labeling. The fully-connected conditional random
field builds the pairwise potentials densely on all pairs of pix-
els in the image. The CRF optimization is conducted as mes-
sage passing that can naturally handle multi-class labeling.
The CRF unary energies are learned from CNN based image
patch labeling. Ground truth labels by radiologists are also
integrated into the CRF as hard constraints. The proposed al-
gorithm is evaluated on a publicly available dataset [3] and
the segmentation/labeling results are validation by an expert
radiologist.

2. METHOD

In this work, we formulate the segmentation problem as a
maximum a posteriori (MAP) inference in a CRF defined over
pixels. To take into account of long-range image interactions,
an efficient fully-connected CRF method is adapted [6].

The CRF representation captures the conditional distribu-
tion of the class labeling X given an image I . Consider a
random field X defined over a set of variables {X1, ..., XN},
with Xi ∈ X being associated with every pixel i ∈ V and
taking a value from the label set L = {l1, ..., lK} of label
categories. The labeling of X from images is obtained with
a maximum a posterior (MAP) estimation of the following

conditional log-likelihood:

E(x) =
∑
i

ψu(xi) +
∑
i<j

ψp(xi, xj), (1)

where i and j range from 1 to N . ψu(xi), the unary poten-
tial, is computed independently by the convolutional neural
network classifier for each pixel/patch [4]. The pairwise po-
tentials in our model have the form

ψp(xi, xj) = u(xi, xj)

K∑
m=1

k(fi, fj)

= u(xi, xj)

K∑
m=1

ω(m)k(m)(fi, fj).

(2)

Each k(m) is a Gaussian kernel

k(m)(fi, fj) = exp(−1

2
(fi − fj)TΛ(m)(fi − fj)), (3)

where the vectors fi and fj are feature vectors for pixels i
and j in an arbitrary feature space; u is a label compatibility
function; and ω(m) are linear combination weights.

In our implementation, we use two-kernel potentials, de-
fined in terms of the CT attenuation vectors Ii and Ij (intro-
duced in [4]) and positions pi and pj :

k(fi, fj) = ω(1)exp(−|pi − pj |
2

2θ2α
− |Ii − Ij |

2

2θ2β
)

+ ω(2)exp(−|pi − pj |
2

2θ2γ
).

(4)

The first term presents the appearance kernel, which repre-
sents the affinities of nearby pixels with similar CT attenu-
ation patterns. The second term presents the smoothness k-
ernel, which removes small isolated regions. The parameter-
s θα, θβ and θγ are used to control the degree of nearness
and similarity. The inference of fully-connected conditional
random field is efficiently approximated by an iterative mes-
sage passing algorithm. Each iteration performs a message
passing, a compatibility transform and a local update. The
message passing can be performed using Gaussian filtering in
feature space. The complexity of the algorithm reduces from
quadratic to linear in the number of variablesN and sublinear
in the number of edges in the model.
Unary classifier using Convolutional Neural Network: At
present, there is a vast amount of relevant work on computer-
ized ILD pattern classification. The Majority focuses on im-
age patch based classification using handcrafted [2, 9, 10] or
CNN learned features [4]. We use the CNN based CRF unary
classifier because of its state-of-the-art performance: classifi-
cation accuracy of 87.9% reported in [4]. To facilitate com-
parison, five common ILD patterns are studied in this work:
healthy, emphysema, ground glass, fibrosis and micronodules
(Fig. 3). Image patches of size 32 × 32 pixels within the



Fig. 2. Major intermediate results. (A) Three channels of
different HU windows illustrated as RGB values. (B) CNN
classifier at a spatial interval of 10 pixels. (C) Annotated ROI.
(D) Final result integrating image features, unary prediction
and hard constraints. (E) Annotated lung mask.

ROI annotations of these five classes, are extracted to train a
deep CNN classifier. The well known CNN AlexNet mod-
el [7] trained on ImageNet is used to fine-tune on our image
patch dataset. 32 × 32 pixel images patches are rescaled to
224 × 224 and three channels of different HU windows [4]
are generated to accommodate the CNN model.

Hard Constraints: The image labels given by radiologists
from the dataset [3] are considered as ground truth and ought
to be strictly enforced. During each CRF message passing
iteration, the hard constrained image regions are hard-reset
to be consistent with their ground truth labels. In such cas-
es, there is only message passing out of the hard constrained
regions towards unlabeled lung image pixels. On the other
hand, we assume that the ILD label map should only be in-
ferred within the lung field. The lung field CRF ILD labeling
is conditionally independent of image pixel patterns outside
the lung mask. In implementation of equation 4, the parame-
ters θα, θβ and θγ are set to be a small constant (0.001) for any
pixel pairs linking lung and non-lung spatial indexes (pi, pj)
so the associated k(fi, fj) has a numerically vanishing value,
which is equivalent to no message passing.

Fig. 3. Examples of 32 × 32 patches for each ILD category.
From left to rights columns: Healthy, Emphysema, Ground
Glass, Fibrosis and Micronodules.

Ground Prediction
Truth NM EM GG FB MN
NM 0.9792 0.0067 0.0029 0.0020 0.0092
EM 0.2147 0.7389 0 0.0170 0.0294
GG 0 0 1.0000 0 0
FB 0.0414 0.0271 0.0118 0.8046 0.1151
MN 0.0007 0.0013 0.0174 0.0058 0.9748

precision 0.9500 0.9320 0.8175 0.9060 0.9666
recall 0.9792 0.7389 1 0.8046 0.9748

F-scall 0.9644 0.8243 0.8996 0.8523 0.9707

Table 1. Confusion matrix, precision, recall and F-score of
ILD pattern labeling.

3. EXPERIMENTS & CONCLUSION

The publicly available ILD dataset [3] is used for training and
validation under two-fold cross validation. ROIs of total 17
different lung patterns and lung masks are also provided a-
long with the dataset. Fig. 4 shows the annotation provid-
ed by the dataset, the labeling obtained from our algorithm
and the ground truth validated by radiologists. In our imple-
mentation, we use the lung mask provided from the dataset.
Please note that trachea is included in the lung mask provided
from the dataset. This misleads our algorithm to give a predic-
tion in the trachea region. A recent rough lung segmentation
method [8] can be used to automate this process.

Quantitative evaluation is given in Table 1 with the total
accuracy reaching 92.8%. More importantly, the amount of
auto-annotated pixels is 7.8 times greater than the amount of
provided annotation [3]. Thus the labeled training dataset [3]
is significantly enlarged via segmentation label propagation.
This data expansion is a critical contribution of this paper.
The CRF solver is implemented in C++. The CNN classi-
fication is implemented in Matlab using MatConvNet pack-
age [11], and is run on a PC with 3.1GHz CPU, 32 GB mem-
ory and a Nvidia Tesla K40 GPU. The most time consum-
ing part is the unary classification of densely sampled im-
age patches. To speed up testing, a relatively coarse predic-
tion map of image patches is sufficient. This map can be bi-
linearly interpolated and later refined by the CRF pairwise
constraints. In our implementation, we predict the labels of



Fig. 4. First Row: Annotated region of interest provided by the original dataset [3] where missing regions of interest are evident.
Second Row: Results produced from our algorithm. Third Row: Ground truth labeled by experienced radiologists.

image patches at a spatial interval of 10 pixels. Parameter-
s θα, θβ and θγ are set to be 80, 13, and 3 through a small
calibration dataset within training. We set ω(1) = ω(2) = 1,
which is found to work well in practice.

In this paper, we present segmentation label propagation
method that efficiently populates the labels from the anno-
tated regions to the whole CT image slices. High segmenta-
tion/labeling accuracy are achieved. The amount of labeled
training data in [3] is significantly expanded and will be pub-
licly shared upon publication 1 .
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