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ABSTRACT

Automated classification of human anatomy is an important
prerequisite for many computer-aided diagnosis systems. The
spatial complexity and variability of anatomy throughout the
human body makes classification difficult. “Deep learning”
methods such as convolutional networks (ConvNets) outper-
form other state-of-the-art methods in image classification
tasks. In this work, we present a method for organ- or body-
part-specific anatomical classification of medical images ac-
quired using computed tomography (CT) with ConvNets. We
train a ConvNet, using 4,298 separate axial 2D key-images
to learn 5 anatomical classes. Key-images were mined from
a hospital PACS archive, using a set of 1,675 patients. We
show that a data augmentation approach can help to enrich the
data set and improve classification performance. Using Con-
vNets and data augmentation, we achieve anatomy-specific
classification error of 5.9 % and area-under-the-curve (AUC)
values of an average of 0.998 in testing. We demonstrate
that deep learning can be used to train very reliable and ac-
curate classifiers that could initialize further computer-aided
diagnosis.

Index Terms— Image Classification, Computed tomog-
raphy (CT), Convolutional Networks, Deep Learning

1. INTRODUCTION

Medical image classification can be an important component
of many computer aided detection (CADe) and diagnosis
(CADx) systems. Achieving high accuracies for automated
classification of anatomy is a challenging task, given the vast
scope of anatomic variation. In this work, our aim is to auto-
matically classify axial CT images into 5 anatomical classes
(see Fig. 1). This aim is achieved by mining radiological re-
ports that refer to key-images and associated DICOM image
tags manually in order to establish a ground truth for train-
ing and testing. Using computer vision and medical image
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computing techniques, we were able to train the computer to
replicate these classes with low error rates.

Fig. 1. Example key-images of 5 classes of anatomy in our
data set: neck, lungs, liver, pelvis and legs.

2. METHOD

Recently, the availability of large annotated training sets and
the accessibility of affordable parallel computing resources
via GPUs have made it feasible to train “deep” convolutional
networks (ConvNets). ConvNets have popularized the topic
of “deep learning” in computer vision research [1]. Through
the use of ConvNets, not only have great advances been made
in the classification of natural images [2], but substantial ad-
vancements have also been made in biomedical applications,
such as digital pathology [3]. Additionally, recent work has
shown how the implementation of ConvNets can substantially
improve the performance of state-of-the-art CADe systems
[4, 5, 6, 7].

2.1. Convolutional networks

In this work, we apply ConvNets to build an anatomy-specific
classifier for CT images. ConvNets are named for their con-
volutional filters which are used to compute image features
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for classification. In this work, we use 5 cascaded layers of
convolutional filters. All convolutional filter kernel elements
are trained from the data in a supervised fashion. This has
major advantages over more traditional CAD approaches that
use hand-crafted features, designed from human experience.
This means that ConvNets have a better chance of capturing
the “essence” of the imaging data set used for training than
when using hand-crafted features [1]. Examples of trained
filters of the first convolutional layer can be seen in Fig. 2.
These first-layer filters capture low spatial frequency signals.
In contrast, a mixed set of low and high frequency patterns
exists in the first convolutional layer shown in [5, 6]. This
indicates that the essential information of this task of classify-
ing holistic slice-based body regions lies in the low frequency
spatial intensity contrasts. These automatically learned low
frequency filters need no tuning by hand, which is different
from using intensity histograms, e.g. [8, 9]. In-between

Fig. 2. The first layer of learned convolutional kernels of a
ConvNet trained on medical CT images.

convolutional layers, the ConvNet performs max-pooling
operations in order to summarize feature responses across
non-overlapping neighboring pixels (see Fig. 3). This allows
the ConvNet to learn features that are invariant to spatial
variations of objects in the images. Feature responses after
the 5th convolutional layer feed into a fully-connected neural
network. This network learns how to interpret the feature
responses and make anatomy-specific classifications. Our
ConvNet uses a final softmax layer which provides a prob-
ability for each object class (see Fig. 3). In order to avoid
overfitting, the fully-connected layers are constrained, using
the “DropOut” method [10]. DropOut behaves as a regular-
izer when training the ConvNet by preventing co-adaptation
of units in the neural network. We use an open-source im-
plementation (cuda-convnet21) by Krizhevsky et al. [2, 11]
which efficiently trains the ConvNet, using GPU acceleration.
Further speed-ups are achieved using rectified linear units as
neuron activation function instead of the traditional neuron
model f(x) = tanh(x) or f(x) = (1 + e−x)−1 in both
training and evaluation [2].

2.2. Data mining of key-images

We retrieve medical images (many related to liver disease)
from the Picture Archiving and Communication System
(PACS) of the Clinical Center of the National Institutes of

1https://code.google.com/p/cuda-convnet2

Fig. 3. ConvNet applied to an axial CT image. The number of
convolutional filters and neural network connections for each
layer are as shown.

Health by searching for a set of keywords in the radiological
reports. Then, each image is assigned a ground truth label
based on the ‘StudyDescription’ and ‘BodyPartExamined’
DICOM tags (manually corrected if necessary). This results
in 5 classes of images as shown in Fig. 1. Images which show
anatomies of multiple classes at once are duplicated and each
image copy is assigned one of the class labels. This case
commonly occurs at the transition region between lung and
liver. Our ConvNet assigns equal probabilities for each class
in these regions.

2.3. Data augmentation

We enrich our data set by applying spatial deformations to
each image, using random translation, rotations and non-rigid
deformations. Each non-rigid training deformation t is com-
puted by fitting a thin-plate-spline (TPS) to a regular grid of
2D control points {ωi; i = 1, 2, ,K}. These control points
can be randomly transformed at the 2D slice level and a de-
formed image can be generated using a radial basis function
φ(r):

t(x) =

K∑
i=1

ciφ (‖x− ωi‖) . (1)

We use φ(r) = r2log(r) which is commonly applied for TPS.
A typical TPS deformation field and deformed variations of
an example image grid are shown in Fig. 4. The variation
of translation t, rotation r and non-rigid deformations d are a
useful way to increase the variety and sample space of avail-
able training data, resulting in Naug. = N × Nt × Nr ×
Nd variations of the imaging data. The maximum amounts
of translation, rotation and non-rigid deformation are chosen
such that the resulting deformations resemble plausible phys-
ical variations of the medical images. This approach is com-
monly referred to as data augmentation and can help avoid
overfitting [2]. Our set ofNaug. axial images are then rescaled
to 256× 256 and used to train a ConvNet with a standard ar-
chitecture for multi-class image classification (as described in
Sec. 2.1).
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Fig. 4. Data augmentation using varying random transforma-
tions, rotations and non-rigid deformations, using thin-plate-
spline (TPS) interpolations on an example image grid.

3. RESULTS

3.1. Key-image data set

We use 80 % of our total dataset for training a multi-class
ConvNet as described in Sec. 2.1. and reserve 20 % for test-
ing purposes. Our data augmentation step (see Sec 2.3) in-
creases the amount of training and testing data drastically, as
shown in Table 3.1. The number of deformations for each
anatomical class is chosen so that the resulting augmented
images build a more balanced and enriched data set. We use
Nt = 2 and Nr = 2 while adjusting Nd for each class to
achieve a balanced data set. Table 3.1 further shows that data
augmentation helps to reduce classification errors from 9.6
% to 5.9 % in testing and furthermore improve the average
area-under-the-curve (AUC) values from 0.994 to 0.998 us-
ing receiver-operating-characteristic (ROC) analysis. Confu-
sion matrices shown in Fig. 5 show a clear reduction of mis-
classification after using data augmentation when testing on
the original test set. We further illustrate the feature space of
our trained ConvNet using t-SNE [12, 13] in Fig. 6. A clear
separation of most classes can be observed. An overlapping
cluster can be seen at the interface between the lungs and liver
images. This is caused by key-images that show both lungs
and livers being near the diaphragm region.

Table 1. Image data set before1 and after2 data augmentation.
An improvement of both error rate and AUC values can be
achieved by using data augmentation.

Organ #1 #2 AUC1 AUC2

leg 477 24,804 1.000 1.000
pelvis 104 22,048 0.996 1.000

liver 2,684 32,208 0.994 0.999
lung 590 25,960 0.981 0.999
neck 443 23,036 0.999 1.000

Sum/Mean AUC 4,298 12,8056 0.994 0.998
Error 9.6% 5.9%

3.2. Full torso CT volume

For qualitative evaluation, we also apply our trained ConvNet
classifier on a full torso CT examination on a slice-by-slice

Fig. 5. Confusion matrices on the original test images before1

and after2 data augmentation.

Fig. 6. 2D embedding of ConvNet features using t-SNE on
a subset of test images. Each dot represents a key-image in
feature space. The color-coding is based on the ground truth
label for each key-image.

basis (dimensions of [512, 512, 652] and [0.98, 0.98, 1.5] mm
voxel spacing). The resulting anatomy-specific probabilities
for each slice are plotted as profiles next to the coronal slice
of the CT volume in Fig. 7. Note how the interface between
the lungs and liver at the level of the diaphragm is captured
by roughly equal probabilities of the ConvNet. This classi-
fication result is achieved in less than 1 minute on a mod-
ern desktop computer and GPU card (Dell Precision T7500,
24GB RAM, NVIDIA Titan Z).

4. DISCUSSION

This work demonstrates how deep ConvNets can be applied to
effective anatomy-specific classification of medical images.
Similar motives to ours are explored in content-based image
retrieval methods [14]. However, association based on clin-
ical reports and image scans can be very loose. This makes
retrieval based on clinical reports difficult. In this paper, we
focus on manually labeled key-images that allow us to train
a anatomy-specific classifier. Other related work includes the
ImageCLEF medical image annotation tasks of 2005-2007.
However, these tasks used highly subsampled 2D version of
medical images (32× 32 pixels) [15]. Methods applied to the
ImageCLEF tasks included using local image descriptors and
intensity histograms in a bag-of-features approach [16]. We



Fig. 7. Organ-specific probabilities for a whole-body CT
scan.

concentrate on classifying images much closer to their origi-
nal 512 × 512 resolution, namely rescaled to 256 × 256. We
show that ConvNets can model this higher detail in the im-
ages and generalize well to large variations found in medical
imaging data with promising quantitative and qualitative re-
sults. Some axial slices in the lower abdomen had erroneously
high probabilities for lung or legs. Here, it could be benefi-
cial to introduce an additional class of ‘lower abdomen’. Our
method could be easily extended to include further augmen-
tation such as image scales in order to model variations in pa-
tient sizes. This type of anatomy classifier could be employed
as an initialization step for further and more detailed analysis,
such as disease and organ specific computer-aided detection
and/or diagnosis.
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