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Abstract (~150 words, but not a hard limit) 

Accurate organ at risk (OAR) segmentation is critical to reduce the radiotherapy post-treatment 

complications. Consensus guidelines recommend a set of more than 40 OARs in the head and 

neck (H&N) region, however, due to the labor-prohibiting nature of this task, most institutions 

choose a substantially simplified protocol by delineating a (much) smaller subset of OARs and 

neglecting the dose distributions associated with other OARs. In this work we propose a novel, 

automated and highly effective stratified OAR segmentation (SOARS) system using deep 

learning to precisely delineate a comprehensive set of 42 H&N OARs. SOARS stratifies 42 

OARs into anchor, mid-level, and small & hard subcategories, with specifically derived neural 

network architectures for each category by neural architecture search (NAS) principles. We built 

SOARS models using 176 training patients in an internal institution and independently evaluated 

on 1327 external patients across six different institutions. It consistently outperformed other 

state-of-the-art methods by at least 3-5% in Dice score for each institutional evaluation (up to 

36% relative error reduction in other metrics). More importantly, extensive multi-user studies 

evidently demonstrated that 98% of the SOARS predictions need only very minor or no 

revisions for direct clinical acceptance (saving 90% radiation oncologists workload), and their 

segmentation and dosimetric accuracy are within or smaller than the inter-user variation. These 

findings confirmed the strong clinical applicability of SOARS for the OAR delineation process in 

H&N cancer radiotherapy workflows, with improved efficiency, comprehensiveness, and quality. 
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Head and neck (H&N) cancer is one of the most common cancers worldwide 1.  Radiation 

therapy (RT) is an important and effective treatment for H&N cancer 2. In RT, the radiation dose 

to normal anatomical structures, i.e., organs at risk (OARs), needs to be limited to reduce post-

treatment complications, such as dry mouth, swallowing difficulties, visual damage, and 

cognitive decline 3-6. This requirement demands accurate OAR delineation on the planning 

computed tomography (pCT) images used to configure the radiation dosage treatment. Recent 

consensus guidelines recommend a set of more than 40 OARs in the H&N region 7. 

Nevertheless, precise manual delineation of this quantity of OARs is an overwhelmingly  

demanding task that requires great clinical expertise and time efforts, e.g., > 3 hours for 24 

OARs 8. Due to the factors of patient overload and shortage of experienced physicians, long 

patient waiting times and/or undesirably inaccurate RT delineations are more common than 

necessary, reducing the treatment efficacy and safety 9. To shorten time expenses, many 

institutions choose a simplified (sometimes overly simplified) OAR protocol by contouring a 

small subset of OARs (e.g., only the OARs closest to the tumor).  Dosimetric information cannot 

be recorded for non-contoured OARs although it is clinically important to track for analysis of 

post-treatment side effects 10. Automatic and accurate segmentation of a comprehensive set of 

H&N OARs is of great clinical benefit in this context. 

 OARs are spatially densely distributed in the H&N region and often have complex 

anatomical shapes, large size variations, and low CT contrasts. Conventional atlas-based 

methods previously enjoyed a prominent history 11-15, but significant amounts of editing efforts 

were found to be unavoidable 8,16. Atlas-based methods heavily rely on the accuracy and 

reliability of deformable image registration that can be very challenging due to OARs’ large 

shape variations, normal tissue removal, tumor growth, and image acquisition differences. 

Volumetric deformable registration methods often take many minutes or even hours to compute.  

 Deep learning approaches have shown substantial improvements for improving 

segmentation accuracy and efficiency as compared to atlas-based methods 17. After early 
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patch-based representation 18, fully convolutional network is the dominant formulation on 

segmentation 19-22 or adopting a segmentation-by-detection strategy 23 24when the number of 

considered OARs is often fewer than or around 20. With a greater number of OARs needed to 

be segmented, deep network optimization may become increasingly difficult. From an early 

preliminary version of this work25, we introduced a novel stratified deep learning framework to 

segment a comprehensive set of H&N OARs by balancing the OARs’ intrinsic spatial and 

appearance complexity with adaptive neural network architectures. The proposed system, 

stratified organ at risk segmentation (SOARS), divides OARs into three levels, i.e., anchor, mid-

level, and small & hard (S&H) according to their complexity. Anchor OARs are high in intensity 

contrast and low in inter-user variability and can be segmented first to provide informative 

location references for the following harder categories. Mid-level OARs are low in contrast but 

not inordinately small. We use anchor-level predictions as additional input to guide the mid-level 

OAR segmentation. S&H OARs are very small in size or very poor in contrast. Hence, we use a 

detection by segmentation strategy to better manage the extremely unbalanced class 

distributions across the entire volume. Besides this processing stratification, we further deploy 

another stratification by using neural architecture search (NAS) to automatically determine the 

optimal network architecture for each OAR category since it is unlikely the same network 

architecture suits all categories equally. We specifically formulate this structure learning problem 

as differentiable NAS 26,27, allowing  automatic selection across 2D, 3D or Pseudo-3D (P3D) 

convolutions with kernel sizes of 3 or 5 pixels at each convolutional block. 

SOARS achieves the state-of-the-art performance in segmenting 42 OARs in a single 

institution cross-validation evaluation25, but essential questions remain unclear regarding to its  

clinical applicability and generality: (1) does SOARS generalize well into a large-scale multi-

institutional evaluation?; (2) how much manual editing effort is required before the predicted 

OARs can be considered as clinically accepted?; (3) how well does the segmentation accuracy 

of SOARS compare towards inter-user variation?; and more critically, (4) what are the 
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dosimetric variations brought by OAR differences in the downstream RT planning stage? To 

adequately address these questions, we first enhance SOARS by replacing the segmentation 

backbone of P-HNN 28 with UNet 29 and conduct the NAS optimization based on the UNet 

architecture. Then, we extensively evaluate SOARS on an external set of 1327 unseen H&N 

cancer patients from six institutions (one internal and five external). Using another 30 randomly 

selected external patients, we further conducted three subjective user studies: (1) physician’s 

assessment of the revision effort and time spent when editing on predicted OARs; (2) a 

comparison of contouring accuracy between SOARS and the inter-user variation; and (3) in the 

intensity modulated RT (IMRT) planning, a dosimetric accuracy comparison using different OAR 

contours (SOARS, SOARS + physician editing, and physician’s manually labeling).  

 

Results 

Datasets for training and evaluation 

In this multi-institutional retrospective study, we collected, in total, 1533 H&N cancer patients 

(each with a pCT scan and who received RT as their primary treatment) to develop and 

evaluate the performance of SOARS. Patients were collected from Chang Gung Memorial 

Hospital (CGMH), First Affiliated Hospital of Xi’an Jiaotong University (FAH-XJU), and First 

Affiliated Hospital of Zhejiang University (FAH-ZU), Gansu Provincial Hospital (GPH), Huadong 

Hospital Affiliated of Fudan University (HHA-FU), Southern Medical University (SMU). Detailed 

patient characteristics in each institution are shown in Table 1. 

Training-validation dataset. First, we created a training-validation dataset to develop 

SOARS using 176 patients from CGMH between 2015 and 2018 (internal training dataset). 

Each patient had 42 OARs manually delineated by senior physicians (board-certified radiation 

oncologists) according to the consensus guideline 7. Based on the OAR statistical shape, CT 

appearance and location characteristics (confirmed by the physicians), 42 OARs are divided 
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into the following three categories. Anchor OARs: brainstem, cerebellum, eye (left and right), 

mandible (left and right), spinal cord, and temporomandibular joint (TMJoint, left and right). Mid-

level OARs: brachial plexus (left and right), basal ganglia (left and right), constrictor muscle 

(inferior, middle, and superior), epiglottis, esophagus, glottic and supraglottic larynx (GSL), oral 

cavity, parotid (left and right), submandibular gland (SMG, left and right), temporal lobe (left and 

right), thyroid (left and right). S&H OARs: cochlea (left and right), hypothalamus, inner ear (left 

and right), lacrimal gland (left and right), lens (left and right), optic nerve (left and right), optic 

chiasm, pineal gland, and pituitary. These 42 OARs represent one of the most comprehensive 

H&N OAR sets and can serve as a superset when testing/evaluating patients in other 

institutions. We divided this dataset into two subgroups: 80% to train the segmentation model 

and 20% as a validation set for model selection and ablation study. The ablation performance of 

SOARS is depicted in Table 2. 

Independent internal testing dataset. Next, for independent evaluation, we collected 326 

patients from CGMH between 2012 and 2020 as another internal testing dataset besides the 

training-validation. OAR labels in this cohort were extracted from those generated during the 

clinical RT contouring process that senior physicians confirmed. Depending on the H&N cancer 

types or tumor locations, a range of 18 to 42 OAR contours were generally available for each 

patient in this cohort. 

Multi-institutional external testing dataset. For quantitative external evaluation, 1001 

patients were collected from five different institutions located in various areas of mainland China 

between 2013 and 2019 (external testing dataset). Each patient is accompanied by the clinical 

RT treatment OAR contours, ranging from 13 to 25 OARs, depending on their institutional-

specific RT protocols. Senior physicians of each institution examined these clinical OAR 

contours to ensure they met the delineation consensus guidelines 7. Detailed patient statistics 

and subject characteristics of these five external institution datasets are given in Table 1. 
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Multi-user testing dataset. To further evaluate the clinical applicability of SOARS, 30 

nasopharyngeal cancer (NPC) patients were randomly selected from one external institution 

(FAH-ZU) to form a multi-user testing dataset. In this cohort, each patient contained 13 OAR 

contours, the tumor target volume contours, and the IMRT plan originally generated by the 

clinical team at FAH-ZU. First, two senior physicians (both with >10 years’ experience in treating 

H&N cancers) edited the SOARS predicted 42 OARs (resulting in SOARS-revised contours) 

and recorded the editing time to assess the revision efforts required for making SOARS 

predicted OAR contours to be clinically accepted. One senior physician manually edited the 13 

OARs used in FAH-ZU’s RT protocol, while the other senior physician edited the other 29 OARs 

not included in FAH-ZU’s RT protocol. Second, another physician with 4 years’ experiences 

manually contoured the 13 OARs in FAH-ZU’s protocol (denoted as human reader contours). 

Then, using the clinical treatment contours of the 13 OARs as gold-standard references, we 

compared the contouring accuracy of SOARS, SOARS-revised, and the human reader. Third, 

while keeping the original dose grid in RT plan, we replaced the clinical reference OAR contours 

by the SOARS, SOARS-revised, human reader contours respectively, to analyze the impact on 

OAR dose metrics. This helps determine if differences in OAR contouring would produce 

clinically relevant differences of radiation doses received by the OARs in the downstream dose 

planning stage. The overview of the multi-user evaluation is illustrated in Fig. 1.  

 

Performance on the CGMH internal testing dataset 

The quantitative performance of SOARS in the internal testing dataset is summarized in Table 

3. SOARS achieved a mean Dice score coefficient (DSC), Hausdorff distance (HD) and average 

surface distance (ASD) of 74.8%, 7.9mm and 1.1mm, respectively, among 42 OARs. For 

stratified OAR categories, mean DSC, HD and ASD for anchor OARs were 86.9%, 5.0mm and 

0.7mm, respectively; for mid-level OARs were 74.6%, 12.4mm and 1.9mm, respectively; and for 

S&H were 67.2%, 3.7mm and 0.7mm, respectively. In comparison, the previous state-of-the-art 
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H&N OAR segmentation approach UaNet 24 had a significantly worse performance (DSC: 

69.8% vs 75.3%, HD: 8.8 vs 7.9mm, ASD: 1.6 vs 1.1mm; all p<0.001). UaNet adopted a 

modified version of 3D Mask R-CNN 30, which decoupled the whole task into detection followed 

by segmentation. Although UaNet achieved one of the previous best performances, it lacked 

dedicated stratified learning to adequately handle a larger number of OARs, possibly accounting 

for the markedly inferior segmentation accuracy compared to SOARS. Among three stratified 

OAR categories, S&H OARs exhibited the largest gap between SOARS and UaNet (DSC: 

67.2% vs 59.4%, HD: 3.7 vs 4.7mm, ASD: 0.7 vs 1.2mm; all p<0.001). This result further 

confirmed the advantage of SOARS, which employed an adaptively tailored processing 

workflow and an optimized network architecture towards a particular category of OARs. Fig. 3 

shows several qualitative comparisons on the internal testing dataset. 

 

Performance on the multi-institutional external testing dataset 

The overall quantitative external evaluation and the individual external institution evaluation 

results are shown in Table 4. SOARS achieved a mean DSC, HD95, and ASD of 78.0%, 6.7mm 

and 1.0mm, respectively, among 25 H&N OARs overall. These represented significant 

performance improvement (p<0.001) as compared against the UaNet (4% absolute DSC 

increase, 16% HD reduction, and 40% ASD reduction).  For individual institutions, average DSC 

scores of SOARS ranged from 76.9% in FAH-XJU to 80.7% in GPH, while most institutions 

yielded approximately 78% DSC. HD values of SOARS were from 5.9mm in FAH-ZU to 8.1mm 

in SMU; and ASD obtained from 0.9mm in FAH-ZU and GPH to 1.3mm in SMU and FAH-XJU. 

Although the OAR numbers varied for external institutions (due to differences among 

institutional specific RT treatment protocols), these quantitative performance metrics are 

generally comparable against the internal testing performance levels, demonstrating that 

SOARS’ generality and accuracy hold well to this large-scale external dataset. SOARS 

consistently and statistically significantly outperforms (p<0.001) UaNet in  external evaluation 
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(UaNet had a mean DSC, HD and ASD of 74.3%, 8.0mm and 1.4mm, respectively). SOARS 

outperforms UaNet in 21 out of 25 OARs on all metrics, with an average DSC improvement of 

~4% and relative distance error reductions of 17.5% for HD and 28.5% for ASD.  

  

 

Assessment of editing effort in multi-user testing dataset 

In 30 multi-user evaluation patients, assessment from two senior physicians showed that the 

vast majority (1237 of 1260 = 42 OAR types × 30, or 98%) of OAR instances produced by 

SOARS were clinically acceptable or required only very minor revision (no revision: 729 (58%); 

revision < 1 minute: 508 (40%)). Only 23 (2%) OAR instances had automated delineation or 

contouring errors that required 1-3 minutes of moderate modification efforts. None OAR 

instances required > 3 minutes of major revision. Fig. 3 details the assessment results. OAR 

types that needed the most frequent major revisions are hypothalamus, optic chiasm, 

esophagus, oral cavity, SMG, and temporal lobes. The average total editing time of all 42 OARs 

for each patient is 10.5 minutes. Using a random selection of 5 out of 30 patients, two senior 

physicians also annotated 42 OARs from scratch, which took averaged 106.4 minutes per 

patient. Thus, the contouring time was significantly reduced by 90% when editing based on 

SOARS predictions. This observation strongly confirms the added value of SOARS in clinical 

practice.  

 

Inter-user contouring accuracy in multi-user testing dataset 

The contouring accuracy of SOARS, SOARS-revised and human reader in the multi-user testing 

dataset is shown in Table 5. It is observed that SOARS consistently yielded higher or 

comparable performance in all 13 OARs (used in FAH-ZU’s RT protocol) as compared to the 

performance of the human reader (a physician with 4 years’ experience). Overall, SOARS 

achieved significantly improved quantitative results (p<0.001) in mean DSC (0.82 vs 0.79), HD 
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(4.3 vs 6.1mm) and ASD (0.6 vs 1.0mm). 11 out of 13 OAR types demonstrated remarked 

improvements when comparing SOARS with the human reader. On the other hand, by 

comparing the contouring accuracy between SOARS and SOARS-revised, they have showed 

very similar quantitative performance (mean DSC: 0.82 vs 0.83, HD: 4.3 vs 3.9mm, and ASD: 

0.6 vs 0.5mm). Note that SOARS derived contours (both SOARS and SOARS revised) have 

significantly better performance as compared to those of the human reader, representing the 

inter-user segmentation variation. Results from the inter-user variation and the previous revision 

effort assessment validated that SOARS can be readily serving as an alternative “expert” to 

output high-quality automatically delineated OAR contours, where very minor or no manual 

efforts are  usually required on further editing the SOARS’ predictions.  

 

Dosimetric accuracy in multi-user testing dataset  

Although OAR contouring accuracy reflects the OAR delineation quality, we can further examine 

its impact on the important downstream dose planning step. The quantitative dosimetric 

accuracy of various OAR sets, i.e., SOARS, SOARS-revised, and human reader, is illustrated in 

Table 5 and Fig. 5 (c), and the relationship between contouring accuracy and dosimetric 

accuracy is plotted in Supplementary Fig. 2 and Fig. 3. It was observed that, for SOARS, the 

dosimetric differences in mean dose and in maximum dose were 4.8% and 3.5%, respectively, 

averaged across all 13 OARs using 30 patients. These were statistically significantly smaller 

(p<0.001) than those of the human reader contours (6.1% and 5.0%), and comparable to those 

of SOARS-revised (4.7% and 3.4%). More specifically, using SOARS predictions, only 25 out of 

390 (6%) OAR instances among 30 patients had a mean dose variation larger than 10%, and no 

OAR has a mean dose difference larger than 30%. In comparison, using the human reader 

contours, 49 out of 390 (12%) OAR instances among 30 patients had a mean dose variation 

larger than 10%, and 12 OAR instances with a mean dose difference larger than 30%. SOARS-

revised contours generally had comparable performance with SOARS. Similar trends were 
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observed for the differences in maximum dose. These results demonstrated that the high 

contouring accuracy of SOARS evidently leaded to high dosimetric accuracy in the dose 

planning stage. Fig. 5 (a, b) shows qualitative dosimetric examples and dose-volume 

histograms (DVH) for using three substitute OAR sets (SOARS, SOARS-revised, human 

reader). We observed that doses received by most OARs from SOARS and SOARS-revised 

matched more closely to the clinical reference doses than those from the human reader. 

 

Discussion 

In this multi-institutional study, we presented a novel Stratified OAR Segmentation deep 

learning model, SOARS, that can be used to automatically delineate 42 H&N OARs as the 

current most comprehensive clinical protocol. By stratifying the organs into three different OAR 

categories, the processing workflows and segmentation architectures (computed by NAS) were 

optimally tailored. As such, SOARS is a well-calibrated synthesis of organ stratification, multi-

stage segmentation, and NAS. SOARS was trained using 176 patients from CGMH and 

extensively evaluated on 1327 unseen patients from six institutions (326 from CGMH and 1001 

from five other external medical centers). It achieved a mean DSC and ASD of 74.9% and 

1.3mm, respectively, in 42 OARs from the CGMH internal testing and generalized well to the 

external testing with a mean DSC of 78.0% and ASD of 1.0mm, respectively, in 25 OARs. 

SOARS consistently outperformed the previous state-of-the-art method UaNet 24 by 3-5% 

absolute DSC and 16-32% of relative ASD in all six institutions. In a multi-user study, 98% of 

SOARS-predicted OARs required no revision or very minor revision from physicians before they 

were clinically accepted , and the manual contouring time can be reduced by 90% (from 106.4 

to 10.5 minutes). In addition, the segmentation and dosimetric accuracy of SOARS were 

comparable to or smaller than the inter-user variation.  



  12

 Recent consensus guidelines recommended delineating more than 40 OARs in H&N 

cancer patients 7. However, in practice, it is an unmet need. Most institutions only delineated a 

small subset of H&N OARs per their institutional specific RT protocol, or they can only afford to 

delineate OARs that are closest to tumor targets. The challenges of following the consensus 

guideline were probably due to the lack of efficient and accurate OAR delineation tools (most 

automated tools focused on segmenting less than or around 20 H&N OARs 18,21,23,31). Manually 

contouring 40+ OARs was too time-consuming and expertise-demanding,  unrealistic in 

practice.  without assessment of the dosimetric results in the complete set of OARs, it was 

infeasible to track and analyze the organ-specific adverse effects after RT treatment in multi-

institutional clinical trials. In addition, data pooling analysis of radiation therapy from different 

institutions was impeded by the inconsistency in OAR contouring guidance. The Global Quality 

Assurance of Radiation Therapy Clinical Trials Harmonization Group (CHG) has provided 

standardized nomenclature for clinical trial use to address this problem 32. With the proposed 

SOARS, it is feasible to provide comprehensive OAR dose evaluation, further facilitating studies 

on post-treatment complications and quality assurance. 

 In this work, from the OAR contouring quality, we further analyzed the OAR dosimetric 

accuracy in the subsequent dose planning step. The dosimetric differences in mean dose and in 

maximum dose were used as dose metrics consistently with previous work 33. Overall, the vast 

majority of SOARS-predicted OAR instances had the mean and maximum dose variance no 

larger than 10%, which was comparable to or smaller than the inter-user dose variations in our 

experiment. This variation was also smaller than the previously reported inter-user dose 

variations in six H&N OAR types 33, where quite few are larger than 30% or even above 50%. 

For individual OARs, we observed that the optic chiasm and optic nerve (left and right) exhibited 

increased dose variation (10-30%) in a small portion of patients (Supplementary Fig. 2 and Fig. 

3). This phenomenon was consistently observed in SOARS, SOARS-revised, and the human 

reader contours. This indicated that dosimetries in areas consisting of these OARs are sensitive 
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to the contouring differences, suggesting that more attention should be required to delineate the 

above OAR types for NPC patients.  

 Our study had several limitations. First, the external testing datasets do not have a 

complete set or the same amount of 42 OAR types. This reflects real-world situations among 

different institutions. Manually labeling 42 OARs for all 1001 external testing patients is 

impractical (estimated to require ≥3 hours per patient). Hence, we chose to use the existing 

clinically labeled OAR types to supplement for testing. Second, the multi-user testing dataset of 

FAH-ZU contains only 13 clinical reference OAR types according to its RT protocol. Thus we 

evaluated the inter-user variation of segmentation and dosimetric accuracy using these 13 

OARs instead of the complete 42 OAR types. Nevertheless, these 13 OAR types included those 

from the three different OAR categories of anchor, mid-level, and S&H. We believe the 

performance from these would reflect the real inter-user variation with a larger number of OAR 

types. Third, to evaluate the dose metrics, we kept the original planning dose grid the same 

while replacing the original clinical OAR contours with substitute contours by SOARS, SOARS-

revised, and the human reader. It would be interesting if we can further use the substitute OAR 

contours and original tumor target volumes to generate new planning dose grids to evaluate the 

OAR dose metrics, which might affect the tumor target dose distributions as well. It would also 

be helpful to conduct a randomized clinical trial comparing the side effects and life quality as 

outcomes of manual and SOARS assisted OAR contouring. This could further validate the 

clinical value of SOARS. We leave these for our future works. 

To conclude, we introduced and developed a stratified deep learning method to segment 

the most comprehensive 42 H&N OAR types in  radiotherapy planning. Through extensive multi-

institutional validation, we demonstrated that our SOARS model achieved accurate and robust 

performance, and produced comparable or higher accuracy in OAR segmentation and the 

subsequent dose planning than the inter-user variation. Physicians needed very minor or no 

revision for 98% of the OAR instances (when editing on SOARS predicted contours) to warrant 
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clinical acceptance. SOARS could be implemented and adopted in the clinical radiotherapy 

workflow for a more standardized, quantitatively accurate, and efficient OAR contouring process 

with high reproducibility.  

 

Methods 

The SOARS framework is illustrated in Fig. 2. It consists of three processing branches to stratify 

the anchor, mid-level, and S&H OAR segmentation, respectively. Stratification manifested first 

in the distinct processing workflow used for each OAR category. We next stratified neural 

network architectures by using differentiable neural architecture search (NAS) 26,27 to search a 

distinct network structure for each OAR category. We will explain each stratification process 

below.  

 

Processing Stratification in SOARS 

SOARS first segmented the anchor OARs. Then, with the help of predicted anchor OARs, mid-

level and S&H OARs were segmented.  For the most difficult category of S&H OARs, SOARS 

first detected their center locations and then zoomed in accordingly to segment the small OARs. 

For the backbone of all three branches, we adopted the UNet structure implemented in the 

nnUNet framework {nnUNet ref} 29, which has demonstrated leading performance in many 

medical image segmentation tasks. We tailored each UNet with NAS, which is explained in the 

subsequent subsection. 

We denoted the training data of 𝑁 instances as 𝑆 ൌ ሼ𝑋௜, 𝑌௜
஺, 𝑌௜

ெ, 𝑌௜
ௌሽ௜ୀଵ

ே , where 𝑋௜, 𝑌௜
஺, 𝑌௜

ெ, 

and 𝑌௜
ௌ were the input pCTs and ground-truth masks for anchor, mid-level, and S&H OARs, 

respectively. The indexing parameter 𝑖 was dropped for clarity. We used boldface to denote 

vector-valued volumes and used vector concatenation as an operation across all voxel 

locations.  
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Anchor branch: Assuming there are 𝐶 anchor classes, we first used the anchor branch to 

generate OAR prediction maps for every voxel location, 𝑗, and every output class, 𝑐: 

𝑌෠௖
஺ሺ𝑗ሻ ൌ 𝑝஺ሺ𝑌஺ሺ𝑗ሻ ൌ 𝑐 | 𝑋; 𝐖஺ሻ, 𝐘෡஺ ൌ ൣ𝑌෠ଵ

஺  ⋅⋅⋅  𝑌෠஼
஺൧                                 (1) 

where UNet functions, parameters, and the output prediction maps were denoted as 𝑝஺ሺ⋅ሻ, 𝐖ሺ⋅ሻ 

and 𝐘෡஺, respectively. Anchor OARs are easy and robust to segment based on their own CT 

image appearance and spatial context features. Consequently, they provided highly informative 

location and semantic cues to support the segmentation of other OARs. 

Mid-level branch: Most mid-level OARs are primarily soft tissue, which have limited 

contrast and can be easily confused with other structures with similar intensities and shapes. 

Hence, we incorporated the anchor predictions into mid-level learning. Specifically, the anchor 

predictions and the pCT were concatenated to create a multi-channel input ൣ𝑋, 𝐘෡஺൧:  

𝑌෠௖
ெሺ𝑗ሻ ൌ 𝑝ெ൫𝑌ெሺ𝑗ሻ ൌ 𝑐 | 𝑋, 𝐘෡஺ ; 𝐖ெ൯                                          (2) 

Small & hard branch: Considering the low contrast and extremely unbalanced class 

distributions for S&H OARs across the entire CT volume, direct S&H OAR segmentation is 

challenging. Here, we further decoupled this branch into a detection followed by segmentation 

process. Because the H&N region has relatively stable anatomical spatial distribution, detecting 

rough locations of S&H OARs is a much easier and reliable task. Once the OAR center was 

approximately determined, a localized region can be cropped out to focus on segmenting the 

fine boundaries in a zoom-in fashion. The detection was implemented using a simple yet 

effective heat map regression approach and the heat map labels were generated at each organ 

center using a 3D Gaussian kernel 34,35. Let 𝑓ሺ⋅ሻ denote the UNet function for the detection 

module, we also combined the anchor branch predictions with pCT as the detection input: 

𝐇෡ ൌ 𝑓൫𝑋, 𝐘෡஺; 𝐖𝐃൯,                                                           (3) 
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where 𝐇෡  were the predicted heat maps of S&H OARs. Given the regressed heat map 𝐇෡ , the 

pixel location corresponding to the highest value was extracted to crop a volume of interest 

(VOI) using three times the extent of the maximum size of the OAR of interest. Then, SOARS 

segmented the fine boundaries of S&H OARs within the VOI. Let 𝑉 denote the cropped VOI in 

pCT. The S&H OAR segmentation was implemented as: 

𝑌෠௖
ௌሺ𝑗ሻ ൌ 𝑝ௌሺ𝑌ௌሺ𝑗ሻ ൌ 𝑐 | 𝑉; 𝐖ௌሻ .                                              (4) 

 

Automatic Neural Architecture Search in SOARS 

Considering the significant statistical variations in OAR appearance, shape, and size, it is 

unlikely that the same network architecture would suit each OAR category equally. Hence, 

SOARS automatically searches the more suitable network architectures for each branch, adding 

an additional dimension to the stratification. We conducted the differentiable NAS 26,27 on top of 

the network structure of UNet 29. The NAS search space included 2D, 3D, and pseudo-3D 

convolutions with either kernel sizes of 3 or 5. Fig. 2 (b-c) demonstrates the network 

architecture and the search space of NAS. Let 𝜙൫⋅ ; 𝜔௫ൈ௬ൈ௭ ൯ denote a composite function of the 

following consecutive operations: batch normalization, a rectified linear unit, and a convolution 

with an 𝑥 ൈ 𝑦 ൈ 𝑧 dimension kernel. If one of the kernel dimensions is set to 1, it reduces to a 2D 

kernel. The search space 𝚽 can be represented as.  

𝜙ଶୈయ
ൌ 𝜙ሺ⋅ ;  𝜔ଷൈଷൈଵሻ, 

𝜙ଶୈఱ
ൌ 𝜙ሺ⋅ ;  𝜔ହൈହൈଵሻ, 

𝜙ଷୈయ
ൌ 𝜙ሺ⋅ ;  𝜔ଷൈଷൈଷሻ, 

𝜙ଷୈఱ
ൌ 𝜙ሺ⋅ ;  𝜔ହൈହൈହሻ, 

𝜙୔ଷୈయ
ൌ 𝜙ሺ𝜙ሺ⋅ ;  𝜔ଷൈଷൈଵሻ ;  𝜔ଵൈଵൈଷሻ, 

𝜙୔ଷୈఱ
ൌ 𝜙ሺ𝜙ሺ⋅ ;  𝜔ହൈହൈଵሻ ;  𝜔ଵൈଵൈହሻ, 
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𝚽 ൌ ൛𝜙ଶୈయ
, 𝜙ଶୈఱ

, 𝜙ଷୈయ
, 𝜙ଷୈఱ

, 𝜙୔ଷୈయ
, 𝜙୔ଷୈఱ

ൟ.                                      (5) 

The architecture was learned in a differentiable fashion. We made the search space continuous 

by relaxing the selection of 𝜙൫⋅ ; 𝜔௫ൈ௬ൈ௭ ൯ to a softmax function over 𝜙. For 𝑘 operations, we 

define a set of 𝛼௞ learnable logits for each. The weight 𝛾௞ for an operation is defined as 𝛾௞ ൌ

ୣ୶୮ሺఈೖሻ

∑ ୣ୶୮ሺఈ೘ሻ೘
, and the combined output is 𝜙ᇱ ൌ ∑ 𝛾௞𝜙௞௞ . As the result of NAS, we selected the 

operation with the top weight to be the searched operation. We used the same scheme to 

search the segmentation network architecture for all three branches (excluding the S&H 

detection module) and trained SOARS using the final auto-searched architecture. The searched 

network architectures for each branch are listed in Fig. 3. The implementation details are 

reported in the supplementary materials.   

 

Quantitative evaluation of contouring accuracy 

For the internal and external testing datasets, the contouring accuracy was quantitatively 

evaluated using three common segmentation metrics {add our ESOGTV arXiv ref} 37, i.e., Dice 

similarity coefficient (DSC), Hausdorff distance (HD) and average surface distance (ASD).  

Additionally, for quantitative comparison, we also trained and tested the previous state-of-the-art 

H&N OAR segmentation method, UaNet 24. For the model development of UaNet, we used the 

default parameter setting from original authors24 as these have been already specifically tuned 

for the head and neck OARs. We applied the same training-validation split as ours to ensure a 

fair comparison. 

 

Human experts’ assessment of revision efforts 

An assessment experiment by human experts was conducted to evaluate the editing efforts 

needed for the predicted OARs to be clinically accepted. Specifically, using the multi-user 

testing dataset, two senior physicians (both >10 years of experience in treating H&N cancers) 
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were asked to edit SOARS predictions of 42 OARs according to the consensus guideline 7. 

Besides the pCT scans, other clinical information, and imaging modality such as MRI (if 

available) were also provided to physicians as reference. The edited OAR contours were 

denoted as SOARS-revised. Four manual revision categories were designated as no revision 

required, revision required in <1 minute (minor revision), revision required in 1–3 minutes 

(moderate revision), and revision required in >3 minutes (major revision 

 

Inter-user contouring evaluation 

Using the multi-user testing dataset, we further asked a board-certified radiation oncologist with 

4 years’ experience specialized in treating H&N cancers to delineate the 13 OAR types in FAH-

ZU’s RT protocol manually. Patients’ pCT scans along with their clinical information and other 

available medical images (including MRI) were provided to the physician. The labeled OAR 

contours were denoted as human reader contours. Then, we compared the contouring accuracy 

between SOARS, SOARS-revised, and the human reader using the evaluation metrics of DSC, 

HD and ASD. The contouring performance of SOARS-revised and the human reader represents 

the inter-user variation in OAR contouring. 

 

Inter-user dosimetric evaluation 

Differences in the OAR contouring accuracy would not, by itself, indicate whether such 

differences are clinically relevant in terms of radiation doses received by the OARs. Therefore, 

we further quantified the dosimetric impact brought by the OAR contouring differences.  

Specifically, for each patient in the multi-user testing dataset, we first used the original clinical 

reference OARs and the corresponding dose grid (dose voxel sizes ranging from 2 to 4 mm) to 

compute the OAR dose metrics in terms of mean doses and max doses. Then, the same dose 

grid was combined with different OAR contour sets, i.e., SOARS, SOARS-revised, human 

reader, and the dose metrics of each OAR contour set were calculated. This design was to 
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isolate the dose effects due strictly to contouring differences because the dose grid was fixed, 

and the dose metrics were quantified by replacing each clinical reference contours with the 

substitute contours. Following the work33, we calculated the difference in mean dose and 

difference in maximum dose as follows: 

Diff୫ୣୟ୬ ୢ୭ୱୣ ൌ  
୫ୣୟ୬ ୢ୭ୱୣ൫ை஺ோೞೠ್ೞ೟೔೟ೠ೟೐,   ஽௢௦௘೛೗ೌ೙൯ି୫ୣୟ୬ ୢ୭ୱୣ൫ை஺ோೝ೐೑,   ஽௢௦௘೛೗ೌ೙൯

୫ୣୟ୬ ୢ୭ୱୣ൫ை஺ோೝ೐೑,   ஽௢௦௘೛೗ೌ೙൯
ൈ 100%         (6) 

Diff୫ୟ୶ ୢ୭ୱୣ ൌ  
୫ୟ୶ ୢ୭ୱୣ൫ை஺ோೞೠ್ೞ೟೔೟ೠ೟೐,   ஽௢௦௘೛೗ೌ೙൯ି୫ୟ୶ ୢ୭ୱୣ൫ை஺ோೝ೐೑,   ஽௢௦௘೛೗ೌ೙൯

୫ୟ୶ ୢ୭ୱୣ൫ை஺ோೝ೐೑,   ஽௢௦௘೛೗ೌ೙൯
ൈ 100%          (7) 

where OARsubstitute represents the OAR contours by SOARS, SOARS-revised, and the human 

reader, respectively, while OARref and Doseplan represent the original clinical OAR contours and 

the dose plans in the actual RT treatment, respectively. The dose-volume histogram (DVH) was 

also plotted for qualitative illustration. The dose/DVH statistics were generated using Eclipse 

11.0 (Varian Medical Systems Inc., Palo Alto, CA). 

 

Statistical Analysis 

The Wilcoxon matched-pairs signed rank test was used to compare the evaluation metrics in 

paired data, while Manning-Whitney U test was used to compare the unpaired data. All analyses 

were performed by using R 38. Statistical significance was set at two-tailed p<0.05. 

 

Data availability 

The data support the findings of this study are available from the corresponding author upon 

reasonable request. The image data utilized in this study on the head & neck organs at risk 

(OARs) segmentation is not publicly available due to the data privacy consideration and 

restricted permission of the current study. 

 

Code availability 
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The baseline UNet used in this study is implemented in the nnUNet deep learning framework 

available at https://github.com/MIC-DKFZ/nnUNet. The codes used for inference and result 

performance evaluation cab be publicly available on GitHub after publication. 
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Table 1. Subject characteristics. CGMH: Chang Gung Memorial Hospital; FAH-XJU: First Affiliated Hospital of Xi'an 
Jiaotong University; FAH-ZU: First Affiliated Hospital of Zhejiang University; GPH: Gansu Provincial Hospital; HHA-
FU: Huadong Hospital Affiliated of Fudan University; SMU: Southern Medical University. 

 

Characteristics 

Train/validation 

CGMH 

(n = 176) 

Internal testing  

CGMH 

(n = 326) 

External testing  

FAH-XJU 

(n = 82) 

External testing  

FAH-ZJU 

(n = 447) 

External testing  

GPH 

(n = 50) 

External testing  

HHA-FU 

(n = 195) 

External testing  

SMU 

(n = 227) 

Sex        

    Male 160 (91%) 284 (87%) 65 (79%) 321 (72%) 33 (66%) 145 (75%) 161 (71%) 

    Female 16 (9%) 42 (13%) 17 (21%) 126 (28%) 17 (34%) 50 (25%) 66 (29%) 

Diagnostic age 54 [48-61] 54 [49-62] 57 [49-66] 57 [50-65] 58 [49-70] 56 [47-65] 50 [42-57] 

Tumor site        

    Nasopharynx 7 (4%) 90 (28%) 16 (19%) 349 (78%) 2 (4%) 94 (48%) 199 (88%) 

    Oropharynx 140 (80%) 86 (26%) 20 (24%) 26 (6%) … 2 (1%) 9 (4%) 

    Hypopharynx 16 (9%) 115 (35%) … 16 (4%) … 8 (4%) 3 (1%) 

    Larynx 2 (1%) 12 (4%) 38 (47%) 11 (2%) 9 (18%) 25 (13%) 4 (2%) 

    Oral Cavity 9 (5%) 15 (5%) 9 (10%) 39 (9%) 3 (6%) 2 (1%) 5 (2%) 

    Salivary gland … … … … 4 (8%) 4 (2%) 3 (1%) 

    Others 2 (1%) 8 (2%) … 6 (1%) 32 (64%) 60 (31%) 4 (2%) 

Clinical T-stage        

    cT1 23 (13%) 50 (15%) 10 (12%) 55 (12%) 12 (24%) 14 (7%) 20 (9%) 

    cT2 64 (36%) 82 (25%) 33 (41%) 181 (41%) 18 (36%) 64 (33%) 54 (24%) 

    cT3 42 (24%) 81 (25%) 25 (30%) 122 (27%) 12 (24%) 35 (18%) 101 (44%) 

    cT4 47 (27%) 113 (35%) 14 (17%) 89 (20%) 8 (16%) 82 (42%) 52 (23%) 

OAR types 

annotated 
42 42 13 13 17 13 25 

Note: Others of tumor sites include tumors located at brain, nasal cavity, or lymph node metastasis.  
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Table 2. Quantitative results of the ablation studies of proposed SOARS using the validation set of the training-
validation dataset. The best performance is highlighted in bold font. 

 
Anchor OARs Mid-level OARs S&H OARs All OARs 

DSC HD ASD DSC HD  ASD DSC HD ASD DSC HD ASD 

Baseline UNet (nnUNet) 84.3% 12.4 1.0 71.4% 18.0 2.0 58.3% 4.7 1.1 70.4% 12.7 1.4 

nnUNet + PS 86.7% 6.4 0.9 72.6% 11.4 1.9 73.7% 4.6 0.7 76.1% 8.2 1.3 

nnUNet+PS+NAS 87.4% 5.4 0.8 74.2% 10.4 1.7 76.2% 3.5 0.6 77.8% 7.2 1.2 

Note: PS, NAS represent processing stratification and neural architecture search, respectively. The unit for Hausdorff 

distance (HD) and average surface distance (ASD) is in mm. 

 

  



  27

Table 3. Quantitative comparisons on the internal testing dataset of 326 patients. Bold and highlighted values 
represent the best performance and significant improvement as compared between UaNet and SOARS, respectively. 

 UaNet SOARS 

Anchor OARs DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 81.6% ± 5.3% 8.8 ± 3.3 1.7 ± 0.7 83.2% ± 5.8% 9.0 ± 4.3 1.6 ± 0.8 

Cerebellum 90.1% ± 9.4% 9.5 ± 6.6 1.2 ± 0.5 92.9% ± 2.2% 7.9 ± 4.8 0.9 ± 0.3 

Eye_Lt 85.1% ± 13.2% 3.7 ± 1.4 0.8 ± 0.5 88.5% ± 4.9% 2.9 ± 1.0 0.3 ± 0.4 

Eye_Rt 86.2% ± 9.8% 3.6 ± 1.2 0.8 ± 0.4 88.7% ± 4.8% 2.8 ± 1.1 0.3 ± 0.4 

Mandible_Lt 85.0% ± 14.6% 14.7 ± 13.3 1.7 ± 4.4 89.1% ± 2.9% 5.4 ± 4.4 0.5 ± 0.4 

Mandible_Rt 86.0% ± 12.3% 13.5 ± 11.6 1.5 ± 3.9 89.0% ± 3.4% 5.5 ± 4.6 0.5 ± 0.4 

SpinalCord 81.5% ± 9.8% 17.1 ± 37.5 4.2 ± 14.5 86.3% ± 4.0% 4.7 ± 1.4 0.7 ± 0.2 

TMJ_Lt 73.0% ± 7.0% 4.8 ± 1.6 1.2 ± 0.4 81.0% ± 9.1% 3.5 ± 1.4 0.7 ± 0.5 

TMJ_Rt 75.5% ± 7.1% 4.4 ± 1.6 1.1 ± 0.4 83.6% ± 6.6% 3.4 ± 1.1 0.6 ± 0.3 

Mid-level OARs       

BasalGanglia_Lt 76.0% ± 7.7% 9.5 ± 3.0 1.8 ± 0.7 70.9% ± 9.5% 11.4 ± 3.6 2.3 ± 1.0 

BasalGanglia_Rt 73.8% ± 9.1% 10.2 ± 2.8 2.0 ± 0.8  71.4% ± 10.1% 10.7 ± 3.3 2.2 ± 0.9 

Brachial_Lt 57.5% ± 8.1% 19.8 ± 11.1 1.9 ± 1.4 60.8% ± 7.6% 21.8 ± 13.2 1.9 ± 1.7 

Brachial_Rt 54.6% ± 10.1% 19.9 ± 9.7 2.0 ± 1.6 59.6% ± 7.8% 24.8 ± 11.7 2.0 ± 1.8 

Const_Inf 68.2% ± 11.9% 7.2 ± 2.9 1.3 ± 0.5 70.2% ± 10.9% 5.9 ± 2.6 1.1 ± 0.5 

Const_Mid 61.3% ± 10.8% 11.5 ± 5.9 1.9 ± 0.8 63.5% ± 8.7% 10.2 ± 5.5 1.7 ± 0.6 

Const_Sup 58.6% ± 10.3% 11.1 ± 4.3 2.0 ± 0.9 61.2% ± 8.8% 10.6 ± 3.9 1.9 ± 0.7 

Epiglottis 68.1% ± 10.2% 8.9 ± 3.6 1.3 ± 0.7 71.3% ± 9.2% 6.7 ± 3.0 1.1 ± 0.6 

Esophagus 74.2% ± 10.5% 16.3 ± 11.4 2.0 ± 2.4 72.7% ± 11.2% 28.9 ± 30.6 4.2 ± 7.2 

GSL 58.6% ± 15.3% 9.5 ± 6.3 2.7 ± 2.1 67.8% ± 10.8% 6.1 ± 1.9 1.7 ± 0.6 

OralCavity 73.4% ± 6.0% 21.2 ± 5.1 5.1 ± 1.3 75.5% ± 7.4% 19.2 ± 5.2 4.0 ± 1.6 

Parotid_Lt 83.2% ± 5.8% 9.6 ± 3.3 1.4 ± 0.6 88.4% ± 4.3% 7.8 ± 4.0 0.9 ± 0.4 

Parotid_Rt 82.7% ± 6.2% 10.6 ± 4.6 1.5 ± 0.7 87.7% ± 3.9% 8.4 ± 4.5 1.0 ± 0.5 

SMG_Lt 79.2% ± 8.9% 7.7 ± 4.4 1.3 ± 0.6 82.0% ± 7.8% 6.5 ± 4.1 1.0 ± 0.5 

SMG_Rt 77.7% ± 9.2% 7.9 ± 4.0 1.4 ± 0.8 82.2% ± 6.6% 6.4 ± 2.8 1.0 ± 0.4 

TempLobe_Lt 80.9% ± 6.2% 13.9 ± 5.9 2.4 ± 0.9 82.9% ± 5.2% 13.0 ± 5.0 2.2 ± 0.7 

TempLobe_Rt 81.4% ± 5.6% 13.9 ± 5.1 2.3 ± 0.8 83.4% ± 5.2% 12.1 ± 4.6 2.1 ± 0.7 

Thyroid_Lt 80.0% ± 9.8% 7.5 ± 4.7 1.0 ± 0.7 82.8% ± 8.7% 7.7 ± 15.0 1.1 ± 3.5 

Thyroid_Rt 80.6% ± 8.9% 7.4 ± 4.9 1.0 ± 0.9 84.1% ± 5.8% 6.3 ± 4.0 0.8 ± 0.4 

S&H OARs       

Cochlea_Lt 62.8% ± 15.9% 2.8 ± 1.5 0.8 ± 0.7 66.0% ± 11.4% 2.3 ± 0.7 0.6 ± 0.3 

Cochlea_Rt 61.7% ± 16.1% 2.9 ± 1.6 0.8 ± 0.7 66.5% ± 10.7% 2.3 ± 0.7 0.6 ± 0.3 

Hypothalamus 37.5% ± 23.1% 9.2 ± 4.2 3.0 ± 1.9 59.1% ± 11.5% 5.7 ± 2.2 1.4 ± 0.7 

InnerEar_Lt 65.6% ± 11.3% 4.2 ± 1.6 1.1 ± 0.6 75.3% ± 7.9% 3.0 ± 0.7 0.6 ± 0.3 

InnerEar_Rt 66.0% ± 10.4% 4.2 ± 1.4 1.1 ± 0.5 75.0% ± 7.8% 3.0 ± 0.7 0.7 ± 0.6 

LacrimalGland_Lt 45.9% ± 13.7% 5.7 ± 1.4 1.6 ± 0.5 57.8% ± 9.5% 4.0 ± 0.9 0.9 ± 0.3 

LacrimalGland_Rt 43.6% ± 13.9% 5.6 ± 1.3 1.6 ± 0.5 56.3% ± 10.2% 4.3 ± 1.2 1.0 ± 0.3 

Lens_Lt 70.9% ± 8.9% 2.8 ± 0.7 0.6 ± 0.3 74.8% ± 9.7% 2.7 ± 0.8 0.4 ± 0.3 

Lens_Rt 72.4% ± 9.7% 2.8 ± 0.7 0.5 ± 0.3 79.5% ± 8.3% 2.2 ± 0.8 0.3 ± 0.2 

OpticChiasm 59.8% ± 15.8% 6.5 ± 2.4 1.4 ± 0.7 67.1% ± 11.4% 6.4 ± 2.1 0.8 ± 0.5 

OpticNerve_Lt 67.6% ± 8.6% 5.2 ± 2.6 0.8 ± 0.3 69.8% ± 7.3% 4.8 ± 3.1 0.7 ± 0.3 

OpticNerve_Rt 67.0% ± 9.7% 5.4 ± 4.6 0.8 ± 0.5 68.2% ± 7.1% 4.5 ± 3.0 0.7 ± 0.3 

PinealGland 50.6% ± 14.0% 4.0 ± 1.4 1.1 ± 0.5 55.6% ± 10.1% 3.6 ± 1.3 0.9 ± 0.4 

Pituitary 60.2% ± 16.0% 4.1 ± 1.3 1.0 ± 0.4 69.6% ± 12.1% 3.4 ± 1.2 0.6 ± 0.4 

Average Anchor 82.7% 8.9 1.6 86.9% 5.0 0.7 

Average Mid-level 72.1% 11.8 1.9 74.6% 12.4 1.8 

Average S&H 59.4% 4.7 1.2 67.2% 3.7 0.7 

Average all 69.8% 8.8 1.6 74.8% 7.9 1.2 



  28

Table 4. Quantitative comparisons on the external testing dataset of 965 patient. The “#” and “OAR” in each 
parenthesis denote the number of patients and the number of annotated OARs, respectively. SOARS achieves the 
best average performance in all metrics amongst five external centers. DSC, HD and ASD represent Dice similarity 
coefficient, Hausdorff distance and average surface distance, respectively. Bold and highlighted values represent the 
best performance and significant improvement (calculated using Wilcoxon matched-pairs signed rank test) as 
compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 77.7% ± 10.7% 11.4 ± 11.1 2.6 ± 2.4 81.2% ± 9.8% 9.6 ± 11.3 2.0 ± 2.3 

Eye_Lt 86.8% ± 5.6% 3.9 ± 1.4 0.7 ± 0.4 89.1% ± 4.8% 3.7 ± 1.5 0.5 ± 0.3 

Eye_Rt 86.6% ± 6.4% 4.1 ± 4.1 0.8 ± 3.1 88.9% ± 4.2% 3.6 ± 1.0 0.5 ± 0.3 

InnerEar_Lt 55.1% ± 12.8% 8.0 ± 7.4 1.9 ± 1.0 61.6% ± 14.0% 4.9 ± 2.0 0.9 ± 0.6 

InnerEar_Rt 54.0% ± 14.5% 9.4 ± 11.2 2.4 ± 2.4 64.0% ± 13.8% 4.7 ± 1.9 0.8 ± 0.5 

Lens_Lt 74.4% ± 11.1% 2.6 ± 1.0 0.5 ± 0.4 76.8% ± 9.7% 2.5 ± 1.0 0.4 ± 0.4 

Lens_Rt 74.7% ± 10.8% 2.6 ± 1.0 0.4 ± 0.5 76.9% ± 9.4% 2.5 ± 0.9 0.4 ± 0.3 

Mandible_Lt 85.5% ± 12.2% 9.2 ± 8.8 1.5 ± 2.7 88.9% ± 3.5% 7.6 ± 7.5 1.2 ± 1.0 

Mandible_Rt 85.8% ± 7.1% 9.3 ± 8.0 1.3 ± 1.2 89.2% ± 3.3% 7.7 ± 7.6 1.2 ± 1.0 

OpticChiasm 55.1% ± 15.6% 9.1 ± 5.1 2.1 ± 1.4 66.2% ± 12.3% 6.6 ± 4.2 1.0 ± 0.6 

OpticNerve_Lt 63.8% ± 12.8% 7.6 ± 5.2 1.1 ± 1.6 66.8% ± 8.2% 5.3 ± 2.7 0.7 ± 0.4 

OpticNerve_Rt 65.5% ± 12.2% 6.7 ± 4.1 1.0 ± 0.9 66.6% ± 8.3% 5.1 ± 2.3 0.7 ± 0.3 

OralCavity 66.4% ± 5.6% 23.6 ± 3.8 5.7 ± 1.0 68.5% ± 7.2% 25.7 ± 4.5 4.8 ± 1.4 

Parotid_Lt 83.2% ± 5.9% 11.6 ± 6.9 1.4 ± 0.8 85.7% ± 5.0% 10.0 ± 6.9 1.1 ± 0.6 

Parotid_Rt 82.8% ± 6.4% 11.9 ± 8.7 1.6 ± 2.1 85.2% ± 5.1% 10.6 ± 8.2 1.2 ± 1.6 

Pituitary 67.5% ± 15.4% 4.1 ± 1.4 0.9 ± 0.7 74.7% ± 10.6% 3.6 ± 1.1 0.5 ± 0.4 

SpinalCord 81.2% ± 10.1% 10.6 ± 19.4 1.3 ± 4.6 83.8% ± 7.1% 7.2 ± 15.7 1.1 ± 4.6 

SMG_Lt 72.0% ± 2.0% 9.4 ± 4.9 2.4 ± 0.3 76.8% ± 4.9% 6.4 ± 2.3 1.3 ± 0.2 

SMG_Rt 75.1% ± 3.2% 8.2 ± 4.9 1.5 ± 0.4 74.8% ± 5.6% 9.1 ± 4.3 0.9 ± 0.1 

TempLobe_Lt 75.9% ± 4.3% 22.5 ± 6.7 2.6 ± 1.1 78.7% ± 3.0% 20.7 ± 5.8 2.2 ± 0.9 

TempLobe_Rt 78.2% ± 4.3% 20.2 ± 5.8 2.1 ± 0.9 79.1% ± 3.3% 20.4 ± 7.1 2.1 ± 0.9 

Thyroid_Lt 73.1% ± 10.0% 14.8 ± 15.3 2.2 ± 2.3 74.5% ± 10.4% 14.5 ± 16.0 2.1 ± 2.6 

Thyroid_Rt 73.6% ± 10.8% 10.4 ± 5.5 1.6 ± 1.2 76.4% ± 9.7% 9.2 ± 4.6 1.4 ± 1.0 

TMJ_Lt 63.7% ± 12.6% 6.0 ± 4.3 1.6 ± 1.1 75.3% ± 9.2% 4.1 ± 1.5 0.7 ± 0.4 

TMJ_Rt 64.9% ± 12.0% 6.0 ± 4.7 1.6 ± 1.2 74.0% ± 9.4% 4.3 ± 1.9 0.8 ± 0.5 

FAH-XJU (#82, OAR 13) 74.8% 7.2 1.2 77.3% 6.4 1.0 

FAH-ZU (#447, OAR 13) 73.7% 7.5 1.3 77.4% 5.9 0.9 

GPH (#50, OAR17) 76.0% 7.6 1.4 80.7% 6.8 0.9 

HHA-FU (#195, OAR 13) 73.5% 8.0 1.5 77.7% 6.4 1.0 

SMU (#227, OAR 25) 73.4% 9.5 1.8 76.9% 8.1 1.3 

Average all 74.3% 8.0 1.4 78.0% 6.7 1.0 
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Table 5. Quantitative comparisons between SOARS, SOARS-revised and human reader contour accuracy on the 
multi-user testing dataset of 30 patient. DSC, HD and ASD represent Dice similarity coefficient, Hausdorff distance, 
and average surface distance, respectively. Difference in mean dose and difference in maximum dose are calculated 
using the equation (6) and (7), respectively. DSC higher the better, while HD, difference in mean dose and difference 
in maximum dose lower the better. SOARS and SOARS-revised results are compared to human reader results using 
Wilcoxon matched-pairs signed rank test, and bold and highlighted values represent the best performance and 
significant improvement (calculated using Wilcoxon matched-pairs signed rank test) as compared between UaNet 
and SOARS, respectively. 

 Segmentation accuracy 

OARs 
human reader SOARS SOARS-revised 

DSC HD (mm) DSC HD (mm) DSC HD (mm) 
BrainStem 86.3% ± 3.4% 6.1 ± 1.7 88.3% ± 2.8% 5.3 ± 1.5 89.7% ± 2.1% 4.4 ± 1.0 

Eye_Lt 91.0% ± 1.9% 3.2 ± 0.4 91.4% ± 1.6% 2.9 ± 0.3 91.4% ± 1.6% 2.9 ± 0.3 

Eye_Rt 89.1% ± 6.3% 3.4 ± 0.7 90.3% ± 4.9% 3.1 ± 0.3 90.3% ± 4.9% 3.1 ± 0.4 

Lens_Lt 74.7% ± 10.2% 2.5 ± 0.8 74.0% ± 8.7% 2.3 ± 0.6 74.8% ± 8.3% 2.3 ± 0.6 

Lens_Rt 71.6% ± 11.0% 2.7 ± 0.9 76.7% ± 6.1% 2.2 ± 0.6 76.8% ± 6.1% 2.2 ± 0.6 

OpticChiasm 69.3% ± 16.1% 5.1 ± 1.6 78.1% ± 7.8% 4.1 ± 1.0 80.2% ± 7.3% 3.9 ± 1.0 

OpticNerve_Lt 65.9% ± 8.0% 9.8 ± 3.2 75.3% ± 6.8% 4.8 ± 2.2 76.4% ± 6.2% 3.6 ± 0.9 

OpticNerve_Rt 65.0% ± 11.6% 8.9 ± 4.7 72.1% ± 7.8% 4.5 ± 2.0 72.5% ± 8.3% 3.9 ± 1.2 

Parotid_Lt 85.1% ± 2.6% 13.8 ± 5.6 90.2% ± 2.2% 7.3 ± 2.7 90.2% ± 2.2% 7.3 ± 2.7 

Parotid_Rt 84.5% ± 4.2% 13.1 ± 5.9 89.9% ± 2.5% 7.0 ± 3.3 90.1% ± 2.2% 6.5 ± 1.6 

SpinalCord 82.5% ± 6.9% 12.9 ± 8.7 84.4% ± 2.5% 4.6 ± 1.5 84.9% ± 2.4% 3.7 ± 0.6 

TMJ_Lt 74.7% ± 11.2% 3.3 ± 0.9 79.7% ± 7.9% 3.2 ± 0.6 82.0% ± 9.8% 2.9 ± 0.6 

TMJ_Rt 72.4% ± 15.4% 3.4 ± 1.4 77.4% ± 7.3% 3.5 ± 0.5  80.3% ± 11.6% 2.9 ± 0.7 

Average 77.8% 7.8 82.1% 4.2 83.0% 3.8 

       
 Dosimetric accuracy 

OARs 
human reader SOARS SOARS-revised 

diff in mean dose diff in max dose diff in mean dose diff in max dose diff in mean dose diff in max dose 
BrainStem 3.2% ± 3.1% 4.3% ± 3.7% 2.4% ± 2.6% 3.3% ± 2.6% 2.3% ± 2.7% 3.3% ± 2.5% 

Eye_Lt 3.4% ± 3.8% 5.7% ± 7.0% 3.3% ± 3.6% 4.9% ± 5.2% 3.3% ± 3.6% 4.8% ± 5.2% 

Eye_Rt 4.7% ± 5.2% 5.8% ± 5.5% 4.5% ± 4.9% 5.7% ± 5.5% 4.5% ± 4.9% 5.7% ± 5.5% 

Lens_Lt 2.2% ± 3.0% 3.1% ± 3.3% 1.9% ± 2.5% 3.4% ± 3.0% 1.6% ± 1.4% 2.9% ± 2.6% 

Lens_Rt 2.9% ± 3.6% 5.1% ± 6.3% 1.9% ± 2.6% 3.9% ± 6.5% 1.9% ± 2.6% 3.8% ± 6.5% 

OpticChiasm 6.3% ± 8.5% 5.5% ± 9.7% 3.7% ± 5.0% 2.4% ± 5.8% 4.0% ± 6.2% 3.1% ± 7.2% 

OpticNerve_Lt 12.7% ± 10.1% 5.2% ± 5.6% 9.4% ± 8.4% 3.1% ± 6.2% 9.5% ± 8.1% 1.9% ± 5.3% 

OpticNerve_Rt 10.4% ± 8.5% 4.7% ± 4.6% 10.9% ± 11.4% 1.9% ± 3.8% 11.8% ± 11.5% 2.5% ± 5.0% 

Parotid_Lt 3.9% ± 3.3% 1.8% ± 2.0% 1.9% ± 1.5% 1.2% ± 1.5% 1.9% ± 1.5% 1.2% ± 1.5% 

Parotid_Rt 4.2% ± 3.6% 1.8% ± 1.6% 2.0% ± 2.0% 0.6% ± 0.9% 2.0% ± 2.0% 0.6% ± 0.9% 

SpinalCord 13.3% ± 13.5% 2.2% ± 3.5% 1.7% ± 1.4% 2.0% ± 2.4% 1.6% ± 1.3% 2.0% ± 2.7% 

TMJ_Lt 2.1% ± 2.0% 2.3% ± 2.2% 2.2% ± 1.7% 2.9% ± 2.1% 1.6% ± 1.5% 2.6% ± 2.0% 

TMJ_Rt 1.6% ± 1.3% 1.9% ± 2.2% 2.1% ± 1.2% 1.9% ± 1.7% 1.9% ± 1.0% 1.7% ± 1.5% 

Average 5.5% 3.8% 3.7% 2.9% 3.7% 2.8% 

Note: diff in mean dose and diff in max dose represent the difference in mean dose and difference in maximum dose, 
respectively. 
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Figures 

 

Fig. 1. The study flow diagram. We totally collected 1533 head & neck cancer patients to develop and evaluate the 
performance of stratified organ at risk segmentation (SOARS). The training patients were collected from Chang Gung 
Memorial Hospital (CGMH), while the testing patients were collected from the internal institution CGMH and other five 
external institutions including First Affiliated Hospital of Xi’an Jiaotong University (FAH-XJU), and First Affiliated Hospital 
of Zhejiang University (FAH-ZU), Huadong Hospital Affiliated of Fudan University (HHA-FU), Gansu Provincial Hospital 
(GPH), Southern Medical University (SMU). We further randomly collected 30 nasopharyngeal cancer patients from 
FAH-ZU to form a multi-user testing dataset to evaluate the clinical applicability of SOARS, including the effort for 
manual revision, comparison to the inter-user OAR segmentation accuracy and comparison to the inter-user OAR 
dosimetric accuracy. 
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Fig. 2. (a) stratified organ at risk segmentation (SOARS) stratifies OAR into anchor, mid-level, and small & hard (S&H) 
categories and uses the anchor OARs to guide the mid-level and S&H OAR segmentation. (b) The backbone network 
UNet with neural architecture search (NAS), which permits an automatic selection across 2D, 3D, and P3D convolution 
blocks. (c) The NAS convolution setting. 
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Fig. 3. Qualitative 42-OAR segmentation using UaNet and SOARs on internal (upper 4 rows) & external (lower 5 
rows) datasets. Rows 5-9 are sample images from GPH, FAH-ZU, HHA-FU, SMU, and FAH-XJU, respectively. The 
1-4 columns are pCT image, pCT with manual OAR delineations, pCT with UaNet predictions, pCT with SOARS 
predictions, respectively. The five external centers have different OAR delineation protocols -- a subset of 42 OARs is 
manually labeled. For better comparison, we only show the ground truth associated predictions and use red arrows to 
indicate the improvements. 



  33

 

Fig. 4. Summary of human experts’ assessment of revision effort on SOARS predicted 42 OARs. Anchor, mid-level 
and S&H OAR categories are shown separately. Vast majority of SOARS predicted OARs only required minor 
revision or no revision from expert’s editing before they can be clinically accepted. Only a very small amount of OARs 
need moderate revision and no OARs need major revision. Minor revision: editing required in <1 minute; moderate 
revision: editing required in 1–3 minutes; and major revision: editing required in >3 minutes. 
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Fig. 5. Using a specific patient, we show a qualitatively dosimetric example (a) in axial views of two anatomic 
locations. Clinical OAR reference: red; human reader: blue; SOARS OAR: green; SOARS-revised: yellow. (b) the 
dose–volume histograms (DVH) plot of OARs in this patient. (c) The scatter plot of differences in mean dose and 
differences in maximum dose brought by various OAR contour sets of human reader, SOARS, and SOARS-revised 
among 30 multi-user testing patients. Blue triangle, green cross and red circle represent results of human reader, 
SOARS-revised and SOARS, respectively. 

 



Supplementary materials 

Supplementary Method

Detailed segmentation baseline and auto-searched network architecture  

The UNet backbone adopted in our work, i.e., the nnUNet {nnUNet ref}, includes a 5-block 

encoding path and a 4-block decoding path. Each encoding block consists of the following 

consecutive operations with residual connection: a convolution, a instance normalization {D. 

Ulyanov 2016 arXiv}, a Leaky ReLu unit, followed by a 2x2x2 max-pooling operator. Each 

decoding block is composed of a 2x2x2 up-sampling process, followed by consecutive 

operations similar to the ones in the encoding block. The specific convolution operation in each 

block is automatically determined using network architecture search (NAS) {Liu, 2018 

#102}{ Liu, 2019 #57} with the search space defined by 2D, 3D, pseudo-3D (P3D) convolutions 

with kernel size of 3 or 5. The detailed convolutional neural network architectures for each organ 

at risk (OAR) segmentation branch are described in Supplementary Fig 1. 

Implementation details 

Image preprocessing. A windowing of [-500, 1000] HU to every pCT scan is applied covering 

the intensity range of our target OARs. VOIs of 256×256×64 voxels are randomly extracted 

around the OAR foreground as training samples for NAS. The heat map labels in the detection 

module are 3D Gaussian distributions (zero mean with standard deviation of 8mm) centered at 

the center of each S&H OAR. 

NAS training. We exploit NAS to search the optimal network architecture for each 

stratified OAR segmentation branch. The combined Dice and Cross-Entropy losses are adopted 

and the RAdam optimizer 36  is used with a momentum of 0.9 and a weight decay of 0.005. To 

train the NAS parameter αk, we first fix αk to 1/9 for 200 epochs. Then we alternatively update αk 

and the network weights for another additional 300 epochs. The batch size is set to 2 for NAS 



training. Only the validation set is used for updating α. The ratio between the training set and the 

validation set is 2:1. The initial learning rates are set to 0.005 for the anchor and mid-level 

branches, and 0.001 for the S&H branch, respectively. 

Final segmentation network training. After NAS is completed, we retrain the searched 

segmentation network from scratch. Data augmentation is applied {nnUNet ref}, e.g., horizontal 

flipping, random rotations in the x-y plane within ±10 degrees, intensity scaling with a ratio 

between [0.75, 1.25], adding Gaussian noise with zero mean and (0, 0.1) variance. The batch 

size is 2. The optimizer is stochastic gradient descent with a Polynomial learning rate policy. 

The initial learning rate is 0.01 with a Nesterov momentum of 0.99. The S&H detection branch is 

trained using L2 loss with a 0.01 learning rate. The total number of training epochs for each 

module is 1000. The average training time is 9~10 GPU days. For inference, the average 

running time is normally less than 3 minutes per patient. All deep models are developed using 

PyTorch and trained on one NVIDIA Quadro RTX 8000 GPU. 

 

Quantitative ablation results of SOARS in the training-validation dataset 

Effect of processing stratification in SOARS. Processing stratification played a key role to 

improve the OAR segmentation performance. The processing stratification ablation results are 

shown in Table 2. The baseline is using 3D UNet model (implemented in the nnUNet framework 

{nnUNet ref}) trained on all 42 OARs together. When anchor OARs were stratified to train only 

on themselves, there was a 2.4% Dice similarity coefficient (DSC) improvement as compared to 

the baseline models. When focusing on mid-level OARs, with the help of anchor OAR guidance, 

there was a significant 37% Hausdorff distance (HD) error reduction (11.4 versus 18.0mm) as 

compared to the baseline model of training on all OARs. This demonstrated the intrinsic 

difficulty in segmenting a large number of various organs without explicitly taking their 

differences into account. It simultaneously indicated that anchor OARs served as effective 

references to better delineate the hard-to-discern boundaries of mid-level organs (most are soft-



tissue organs). For S&H OARs, by cropping the volume of interest (VOI) using the detection 

module and with the support of anchor OAR predictions, there were remarkable accuracy 

improvements in segmenting S&H OARs, boosting DSC from 58.3% to 73.7%, as compared 

against directly segmenting from CT. This further demonstrated the merits and advantages of 

our stratified learning approach that adapted to provide the optimal handling of OAR categories 

with different characteristics. Fig. 3 depicts qualitative examples of segmenting anchor, mid-

level and S&H OARs.  

Effect of neural architecture search (NAS) associated with SOARS. Table 2 also outlines 

the performance improvements provided by NAS. As can be seen, all three branches trained 

with NAS consistently produced more accurate segmentation results than those trained using 

the baseline 3D UNet. This validated the effectiveness of NAS on more complicated 

segmentation tasks. For the three branches, mid-level and S&H OAR categories showed 

considerable performance improvements, from 72.6% to 74.2% and 73.7% to 76.2% in DSC 

scores respectively, while the anchor branch provides a marginal but consistent improvement 

(0.7% in DSC). Considering that anchor OARs are already relatively easy to segment, the fact 

that NAS can further boost the performance attested to its benefits.  

The NAS searched neural network architectures are depicted in Supplementary Fig. 1. It 

is observed that, for the encoding path, the mid-level and S&H branches gradually involve more 

3D or P3D convolution kernels as compared to the anchor branch. This indicates that 3D 

kernels may not always be the best choice for segmenting objects with reasonable size or 

contrast, as 2D kernels dominate the anchor branch. Consequently, appropriate 2D and P3D 

kernels can reduce the computation cost and memory consumption. For the S&H branch, our 

findings are consistent with the intuition that small or low contrast objects rely more on the 3D 

spatial information and context for better segmentation. As for the decoding path, all three 

branches are mainly equipped with 3D or P3D convolution kernels. This is an interesting result, 



as it implies that the decoding path tries to incorporate the convolutional features in a more 3D 

fashion for all three OAR categories. 

References 

Isensee, Fabian, et al. "nnU-Net: a self-configuring method for deep learning-based biomedical 
image segmentation." Nature methods 18.2 (2021): 203-211 

D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for 
fast stylization,” arXiv preprint arXiv:1607.08022, 2016. 

Liu, H., Simonyan, K. & Yang, Y. Darts: Differentiable architecture search. arXiv preprint 
arXiv:1806.09055 (2018). 

Liu, C. et al. Auto-deeplab: Hierarchical neural architecture search for semantic image 
segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition.  82-92. 

 
  



Supplementary Figures 

 

Supplementary Fig. 1 (a) illustrates the auto-searched backbone network architecture (UNet) for the anchor, mid-
level, and small & hard (S&H) branches. The search space of the convolution operation includes 2D, 3D, and 
pseudo-3D (P3D) with either kernel size of 3 or 5. (b) lists the detailed operations in the encoder and decoder blocks. 
The auto-searched two convolution operations within each block are of the same type. 

  



 

Supplementary Fig. 2. The scatter plot of differences in maximum dose brought by various OAR contour sets of 
SOARS, SOARS-revised, and human reader. Each OAR and all OAR results are plotted, respectively.  Blue triangle, 
green cross and red circle represent results of human reader, SOARS-revised and SOARS, respectively. 

  



 

Supplementary Fig. 3. The scatter plot of differences in mean dose brought by various OAR contour sets of SOARS, 
SOARS-revised, and human reader. Each OAR and all OAR results are plotted, respectively. Blue triangle, green 
cross and red circle represent results of human reader, SOARS-revised and SOARS, respectively.  

  



Supplementary Tables 

Supplementary Table 1. Quantitative comparisons on the external FAH-XJU testing dataset of 82 patients. The 
proposed SOARS outperforms the previous leading approach UaNet in almost all metrics across different OARs. 
DSC, HD and ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, 
respectively. Bold and highlighted values represent the best performance and significant improvement calculated 
using Wilcoxon matched-pairs signed rank test as compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 78.4% ± 6.4% 9.2 ± 3.1 1.9 ± 0.8 80.5% ± 6.7% 8.2 ± 3.0 1.8 ± 0.9 

Eye_Lt 86.7% ± 5.3% 5.0 ± 5.3 0.8 ± 0.6 85.8% ± 5.7% 5.4 ± 5.4 0.9 ± 0.7 

Eye_Rt 87.5% ± 2.6% 4.1 ± 1.0 0.7 ± 0.2 86.1% ± 3.5% 4.3 ± 1.2 0.7 ± 0.3 

Lens_Lt 68.4% ± 9.4% 2.8 ± 0.6 0.6 ± 0.3 69.6% ± 7.0% 2.7 ± 0.6 0.6 ± 0.2 

Lens_Rt 70.8% ± 8.2% 2.8 ± 0.7 0.5 ± 0.3 72.9% ± 7.2% 2.4 ± 0.7 0.5 ± 0.2 

OpticChiasm 57.6% ± 14.0% 6.7 ± 2.4 1.5 ± 0.8 68.1% ± 7.0% 6.5 ± 3.0 1.0 ± 0.5 

OpticNerve_Lt 66.0% ± 7.4% 5.0 ± 2.6 0.8 ± 0.4 67.9% ± 6.9% 6.2 ± 3.0 0.8 ± 0.3 

OpticNerve_Rt 65.5% ± 8.5% 4.3 ± 1.1 0.8 ± 0.3 66.4% ± 6.0% 4.8 ± 1.2 0.8 ± 0.2 

Parotid_Lt 78.2% ± 5.2% 11.7 ± 3.0 1.9 ± 0.6 79.7% ± 5.0% 10.5 ± 3.2 1.8 ± 0.6 

Parotid_Rt 77.6% ± 6.2% 12.4 ± 4.5 2.0 ± 0.8 79.4% ± 5.2% 10.9 ± 3.8 1.8 ± 0.6 

Pituitary 62.4% ± 12.8% 4.4 ± 1.5 1.2 ± 0.6 75.6% ± 11.1% 3.7 ± 1.6 0.6 ± 0.5 

SpinalCord 79.2% ± 14.2% 7.5 ± 9.0 1.0 ± 1.2 82.3% ± 4.9% 6.7 ± 9.4 0.9 ± 1.4 

TMJ_Lt 76.7% ± 5.2% 12.5 ± 6.5 1.9 ± 1.5 77.8% ± 9.0% 10.9 ± 7.0 1.5 ± 1.5 

TMJ_Rt 72.8% ± 12.4% 11.3 ± 8.4 2.1 ± 1.6 81.4% ± 5.2% 6.9 ± 1.5 0.9 ± 0.3 

Average 74.8% 7.2 1.2 77.3% 6.4 1.0 

 

 

  



Supplementary Table 2. Quantitative comparisons on the external FAH-ZU testing dataset of 447 patients. The 
proposed SOARS outperforms the previous leading approach UaNet in almost all metrics across different OARs. 
DSC, HD and ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, 
respectively. Bold and highlighted values represent the best performance and significant improvement calculated 
using Wilcoxon matched-pairs signed rank test as compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 77.8% ± 10.9% 10.1 ± 6.2 2.6 ± 2.4 82.4% ± 11.3% 8.3 ± 5.7 1.8 ± 2.2 

Eye_Lt 87.9% ± 3.0% 3.8 ± 0.9 0.6 ± 0.2 87.9% ± 3.6% 3.5 ± 1.0 0.5 ± 0.3 

Eye_Rt 86.8% ± 5.6% 4.3 ± 5.7 0.9 ± 4.4 87.3% ± 2.2% 3.7 ± 1.0 0.6 ± 0.2 

Lens_Lt 69.6% ± 10.5% 3.0 ± 1.1 0.7 ± 0.5 71.4% ± 9.0% 3.0 ± 1.0 0.6 ± 0.4 

Lens_Rt 70.5% ± 10.7% 2.9 ± 1.2 0.7 ± 0.5 72.0% ± 8.4% 2.9 ± 0.9 0.6 ± 0.4 

OpticChiasm 53.0% ± 15.7% 9.9 ± 5.8 2.3 ± 1.6 65.9% ± 12.8% 6.6 ± 4.9 1.1 ± 0.6 

OpticNerve_Lt 66.4% ± 9.7% 8.9 ± 5.0 1.1 ± 1.9 66.3% ± 8.1% 5.4 ± 2.9 0.7 ± 0.5 

OpticNerve_Rt 68.3% ± 8.4% 7.6 ± 3.9 0.8 ± 0.4 66.1% ± 7.8% 5.3 ± 2.3 0.7 ± 0.3 

Parotid_Lt 82.2% ± 4.8% 12.8 ± 5.1 1.7 ± 0.7 85.4% ± 4.6% 10.6 ± 4.7 1.2 ± 0.5 

Parotid_Rt 82.8% ± 5.2% 12.1 ± 6.0 1.6 ± 0.8 84.8% ± 4.5% 11.1 ± 5.3 1.3 ± 0.7 

SpinalCord 83.8% ± 7.6% 13.1 ± 22.6 1.5 ± 6.0 86.3% ± 7.4% 8.6 ± 22.0 1.3 ± 6.5 

SMG_Lt 64.3% ± 8.5% 4.4 ± 1.0 1.3 ± 0.4 76.2% ± 7.7% 3.7 ± 0.9 0.7 ± 0.4 

SMG_Rt 63.5% ± 10.1% 4.5 ± 1.8 1.3 ± 0.5 74.6% ± 7.8% 3.9 ± 1.7 0.8 ± 0.5 

Average 73.5% 7.5 1.3 77.4% 5.9 0.9 

 

 

  



Supplementary Table 3. Quantitative comparisons on the external GPH testing dataset of 50 patients. The proposed 
SOARS outperforms the previous leading approach UaNet in almost all metrics across different OARs. DSC, HD and 
ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, respectively. Bold and 
highlighted values represent the best performance and significant improvement calculated using Wilcoxon matched-
pairs signed rank test as compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 77.1% ± 14.6% 12.6 ± 7.2 2.4 ± 1.1   78.9% ± 10.5% 11.7 ± 9.5 2.1 ± 1.4 

Eye_Lt 85.6% ± 3.5% 4.0 ± 0.8 0.8 ± 0.3 92.1% ± 3.9% 3.5 ± 0.7 0.4 ± 0.3 

Eye_Rt 85.3% ± 4.6% 4.4 ± 1.2 0.8 ± 0.4 91.5% ± 4.2% 3.3 ± 0.9 0.4 ± 0.3 

Lens_Lt 78.1% ± 8.2% 2.1 ± 0.7 0.4 ± 0.2 82.2% ± 5.2% 2.1 ± 0.5 0.3 ± 0.2 

Lens_Rt 79.6% ± 9.4% 2.7 ± 0.9 0.3 ± 0.2 81.9% ± 7.5% 2.0 ± 0.6 0.3 ± 0.2 

Mandible_Lt 89.8% ± 1.4% 6.7 ± 2.7 0.8 ± 0.2 91.7% ± 1.1% 6.7 ± 2.7 0.7 ± 0.1 

Mandible_Rt 88.8% ± 1.2% 9.1 ± 2.1 0.8 ± 0.2 91.8% ± 1.2% 6.2 ± 2.8 0.7 ± 0.1 

OpticChiasm 51.5% ± 16.0% 9.1 ± 2.1 2.2 ± 1.0 60.1% ± 9.8% 7.7 ± 2.2 1.1 ± 0.5 

OpticNerve_Lt 57.9% ± 16.7% 6.4 ± 4.0 1.6 ± 1.4 69.9% ± 6.1% 4.8 ± 1.5 0.6 ± 0.3 

OpticNerve_Rt 57.4% ± 18.5% 6.5 ± 3.5 1.6 ± 1.5 69.2% ± 8.3% 4.6 ± 1.6 0.6 ± 0.3 

OralCavity 69.0% ± 3.1% 23.6 ± 4.5 5.3 ± 0.8 72.2% ± 4.7% 26.9 ± 4.9 4.1 ± 0.8 

Parotid_Lt 87.1% ± 4.3% 11.3 ± 6.2 0.9 ± 0.5 87.6% ± 4.4% 9.8 ± 5.8 0.8 ± 0.6 

Parotid_Rt 86.5% ± 4.5% 9.7 ± 5.8 0.9 ± 0.6 87.1% ± 4.4% 8.8 ± 4.6 0.8 ± 0.5 

Pituitary 88.8% ± 3.3% 2.3 ± 0.8 0.1 ± 0.1 89.0% ± 3.3% 2.0 ± 0.3 0.1 ± 0.1 

SpinalCord 78.7% ± 5.4% 6.6 ± 2.5 1.1 ± 0.5 78.9% ± 5.1% 6.5 ± 2.5 1.1 ± 0.5 

TMJ_Lt 65.8% ± 17.1% 8.1 ± 4.6 1.5 ± 0.8 73.1% ± 20.0% 4.1 ± 1.7 0.9 ± 0.9 

TMJ_Rt 65.0% ± 17.2% 7.2 ± 3.7 1.5 ± 0.8 75.3% ± 23.2% 4.1 ± 1.7 0.8 ± 1.0 

Average 76.0% 7.6 1.4 80.7% 6.8 0.9 

 

 

  



Supplementary Table 4. Quantitative comparisons on the external HHA-FU testing dataset of 195 patients. The 
proposed SOARS outperforms the previous leading approach UaNet in almost all metrics across different OARs. 
DSC, HD and ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, 
respectively. Bold and highlighted values represent the best performance and significant improvement calculated 
using Wilcoxon matched-pairs signed rank test as compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 75.8% ± 13.2% 13.3 ± 7.5 2.9 ± 1.8 78.4% ± 8.9% 10.6 ± 6.8 2.3 ± 1.4 

Eye_Lt 85.3% ± 7.0% 4.0 ± 1.2 0.9 ± 0.5 90.6% ± 5.7% 3.7 ± 1.1 0.5 ± 0.4 

Eye_Rt 86.3% ± 6.6% 3.8 ± 1.1 0.8 ± 0.5 90.9% ± 5.6% 3.5 ± 1.1 0.5 ± 0.4 

Lens_Lt 78.4% ± 9.0% 2.3 ± 0.7 0.4 ± 0.3 82.3% ± 6.9% 2.1 ± 0.6 0.3 ± 0.2 

Lens_Rt 78.2% ± 8.0% 2.3 ± 0.6 0.4 ± 0.2 82.4% ± 6.7% 2.1 ± 0.6 0.3 ± 0.2 

OpticChiasm 50.1% ± 15.1% 10.7 ± 3.5 2.5 ± 1.2 57.2% ± 10.2% 9.5 ± 2.9 1.5 ± 0.7 

OpticNerve_Lt 52.4% ± 14.7% 7.2 ± 4.1 1.6 ± 1.2 62.3% ± 8.5% 6.2 ± 2.9 1.0 ± 0.4 

OpticNerve_Rt 56.2% ± 13.7% 6.0 ± 3.1 1.2 ± 0.8 61.9% ± 9.7% 6.2 ± 3.1 1.0 ± 0.4 

Parotid_Lt 85.1% ± 6.0% 8.6 ± 4.1 1.1 ± 0.7 85.6% ± 6.0% 7.7 ± 3.7 1.0 ± 0.7 

Parotid_Rt 84.1% ± 6.5% 10.1 ± 12.9 1.6 ± 4.2 85.5% ± 5.8% 9.2 ± 12.9 1.3 ± 4.0 

SpinalCord 74.9% ± 12.6% 12.2 ± 26.7 1.9 ± 4.6 78.9% ± 6.8% 7.6 ± 2.7 1.2 ± 0.6 

SMG_Lt 70.7% ± 5.2% 13.5 ± 2.1 2.2 ± 0.2 78.3% ± 7.9% 7.9 ± 1.5 1.3 ± 0.3 

SMG_Rt 76.2% ± 4.5% 10.5 ± 6.4 1.6 ± 0.7 76.2% ± 9.1% 7.5 ± 2.2 1.4 ± 0.9 

Average 73.2% 8.0 1.5 77.7% 6.4 1.0 

 

 

  



Supplementary Table 5. Quantitative comparisons on the external SMU testing dataset of 227 patients. The proposed 
SOARS outperforms the previous leading approach UaNet in almost all metrics across different OARs. DSC, HD and 
ASD represent Dice similarity coefficient, Hausdorff distance, and average surface distance, respectively. Bold and 
highlighted values represent the best performance and significant improvement calculated using Wilcoxon matched-
pairs signed rank test as compared between UaNet and SOARS, respectively. 

OARs 
UaNet SOARS 

DSC HD (mm) ASD (mm) DSC HD (mm) ASD (mm) 

BrainStem 78.7% ± 7.9% 12.6 ± 19.1 2.4 ± 3.2 81.2% ± 7.2% 11.4 ± 19.9 2.1 ± 3.3 

Eye_Lt 85.8% ± 8.4% 3.8 ± 0.9 0.7 ± 0.3 90.8% ± 4.7% 3.6 ± 0.9 0.5 ± 0.3 

Eye_Rt 86.6% ± 8.5% 3.7 ± 0.9 0.7 ± 0.3 90.5% ± 4.7% 3.6 ± 0.9 0.5 ± 0.3 

InnerEar_Lt 55.1% ± 12.8% 8.0 ± 7.4 1.9 ± 1.0 61.6% ± 14.0% 4.9 ± 2.0 0.9 ± 0.6 

InnerEar_Rt 54.0% ± 14.5% 9.4 ± 11.2 2.4 ± 2.4 64.0% ± 13.8% 4.7 ± 1.9 0.8 ± 0.5 

Lens_Lt 81.1% ± 8.9% 2.1 ± 0.8 0.3 ± 0.2 83.8% ± 5.9% 2.0 ± 0.7 0.2 ± 0.2 

Lens_Rt 80.1% ± 9.4% 2.1 ± 0.8 0.3 ± 0.2 82.5% ± 7.6% 2.1 ± 0.8 0.3 ± 0.2 

Mandible_Lt 85.3% ± 12.5% 9.4 ± 9.0 1.5 ± 2.7 88.8% ± 3.5% 7.7 ± 7.6 1.2 ± 1.0 

Mandible_Rt 85.7% ± 7.2% 9.5 ± 8.2 1.3 ± 1.2 89.1% ± 3.3% 7.8 ± 7.8 1.2 ± 1.0 

OpticChiasm 53.0% ± 15.3% 6.6 ± 2.0 1.4 ± 0.7 69.1% ± 10.9% 5.8 ± 2.1 0.6 ± 0.4 

OpticNerve_Lt 63.9% ± 13.9% 5.7 ± 5.4 1.0 ± 1.2 69.0% ± 7.6% 4.8 ± 2.4 0.6 ± 0.4 

OpticNerve_Rt 64.7% ± 14.7% 5.5 ± 4.6 1.0 ± 1.4 68.8% ± 8.1% 4.6 ± 1.8 0.6 ± 0.3 

OralCavity 48.2% ± 6.9% 29.4 ± 7.3 9.0 ± 1.7 50.9% ± 6.5% 28.2 ± 5.0 7.5 ± 1.4 

Parotid_Lt 85.0% ± 6.7% 10.6 ± 10.3 1.0 ± 0.9 87.4% ± 4.3% 9.6 ± 10.9 0.7 ± 0.5 

Parotid_Rt 83.3% ± 8.0% 12.4 ± 11.7 1.4 ± 2.7 87.6% ± 4.5% 10.4 ± 11.1 0.8 ± 0.8 

Pituitary 66.7% ± 15.2% 4.2 ± 1.3 0.9 ± 0.7 73.2% ± 10.1% 3.7 ± 1.0 0.5 ± 0.4 

SpinalCord 80.3% ± 11.4% 6.2 ± 5.4 0.8 ± 0.6 83.0% ± 4.8% 4.6 ± 1.3 0.7 ± 0.2 

SMG_Lt 70.9% ± 2.1% 5.4 ± 0.8 2.6 ± 0.2 75.3% ± 0.7% 4.9 ± 1.9 1.3 ± 0.1 

SMG_Rt 74.2% ± 2.7% 5.9 ± 3.4 1.3 ± 0.1 73.4% ± 1.7% 6.6 ± 0.7 1.0 ± 0.0 

TempLobe_Lt 75.6% ± 4.1% 22.5 ± 6.8 2.6 ± 1.1 78.8% ± 3.1% 20.6 ± 5.5 2.2 ± 0.9 

TempLobe_Rt 78.4% ± 4.0% 19.8 ± 5.6 2.0 ± 0.9 79.2% ± 3.1% 20.1 ± 6.4 2.1 ± 0.8 

Thyroid_Lt 72.8% ± 10.3% 12.8 ± 6.2 1.9 ± 1.3 74.2% ± 10.6% 12.2 ± 6.9 1.8 ± 1.4 

Thyroid_Rt 73.7% ± 10.9% 10.0 ± 4.4 1.6 ± 1.1 75.9% ± 10.0% 9.4 ± 4.8 1.5 ± 1.1 

TMJ_Lt 68.9% ± 15.6% 10.0 ± 6.5 2.3 ± 1.6 73.2% ± 11.9% 5.1 ± 2.1 0.8 ± 0.5 

TMJ_Rt 68.7% ± 15.5% 10.0 ± 7.3 2.5 ± 1.9 72.4% ± 12.3% 5.2 ± 2.1 0.9 ± 0.6 

Average 72.4% 9.5 1.8 76.9% 8.1 1.3 

 


