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Convolutional Invasion and Expansion Networks
for Tumor Growth Prediction
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Tumor growth is associated with cell invasion and mass-effect,
which are traditionally formulated by mathematical models,
namely reaction-diffusion equations and biomechanics. Such
models can be personalized based on clinical measurements to
build the predictive models for tumor growth. In this paper,
we investigate the possibility of using deep convolutional neural
networks (ConvNets) to directly represent and learn the cell
invasion and mass-effect, and to predict the subsequent involve-
ment regions of a tumor. The invasion network learns the cell
invasion from information related to metabolic rate, cell density
and tumor boundary derived from multimodal imaging data.
The expansion network models the mass-effect from the growing
motion of tumor mass. We also study different architectures that
fuse the invasion and expansion networks, in order to exploit
the inherent correlations among them. Our network can easily
be trained on population data and personalized to a target
patient, unlike most previous mathematical modeling methods
that fail to incorporate population data. Quantitative experiments
on a pancreatic tumor data set show that the proposed method
substantially outperforms a state-of-the-art mathematical model-
based approach in both accuracy and efficiency, and that the
information captured by each of the two subnetworks are
complementary.

Index Terms—Tumor growth prediction, Deep learning, Con-
volutional neural network, Model personalization.
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I. INTRODUCTION

Cancer cells originate from the irreversible injuring of res-
piration of normal cells. Part of the injured cells could succeed
in replacing the lost respiration energy by fermentation energy,
but will therefore convert into undifferentiated and widely
growing cells (cancer cells) [1]. Tumors develop from such
abnormal cell/tissue growth, which is associated with cell
invasion and mass-effect [2]. Cell invasion is characterized
by the migration and penetration of cohesive groups of tumor
cells to surrounding tissues, and mass-effect by the distension
and outward pushing of tissues induced by tumor growth (Fig.
1).

Medical imaging data provides non-invasive and in vivo
measurements of the tumor morphology and underlying tumor
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Fig. 1. The two fundamental processes of tumor growth: cell invasion and
expansive growth of tumor cells.

physiological parameters over time. For example, dual phase
contrast-enhanced CT is the most readily available modality
for evaluation of tumor morphology and cell density in clinical
environments; In recent years, FDG-PET (2-[18F] Fluoro-2-
deoxyglucose positron emission tomography) and MRI are
gaining popularity in characterizing different tumor proper-
ties, such as metabolic rate and fluid characteristics [3]–[6].
For tumor growth assessment, RECIST (Response Evaluation
Criteria in Solid Tumors), where the longest diameter of a
tumor is measured [7], is the current standard of practice.
RECIST has its limitation since it is only one dimensional
measurement. Mathematical modeling, which represents the
tumor growth process as a physiological and biomechanical
model and personalizes the model based on clinical measure-
ments of a target patient, can predict the entire tumor volume
including its size, shape and involved region. Therefore, data-
driven tumor growth modeling has been actively studied [4]–
[6], [8]–[13].

In most previous model-based methods [4]–[6], [9], [11],
[13], both cell invasion and mass-effect are accounted for,
since they are inter-related, mutually reinforcing factors [2].
Cell invasion is often modeled by the reaction-diffusion
equations [4]–[6], [8], [9], [11]–[13], and mass-effect by the
properties of passive material (mainly isotropic materials) and
active growth (biomechanical model) [4]–[6], [9]–[11], [13].
While these methods yield informative results, most previous
tumor growth models are independently estimated from the
target patient without considering the tumor growth pattern
of population trend. Furthermore, the small number of model
parameters (e.g., 5 in [6]) may be insufficient to represent the
complex characteristics of tumor growth.

Apart from these mathematical modeling methods, a dif-
ferent idea based on voxel motion is proposed [14]. By
computing the optical flow of voxels over time, and estimating
the future deformable field via an autoregressive model, this
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method is able to predict entire brain MR scan. However, the
tumor growth pattern of population trend is still not involved.
Moreover, this method might over-simplify the tumor growth
process, since it infers the future growth in a linear manner
(most tumor growth are nonlinear).

Data-driven statistical learning is a potential solution to
incorporate the population trend of tumor growth into person-
alized tumor modeling. The pioneer study in [15] attempts to
model the glioma growth patterns as a classification problem.
This model learns tumor growth patterns from selected features
at patient, tumor, and voxel levels, and achieves a prediction
accuracy (both precision and recall) of 59.8%. However, this
study only learns population trend of tumor growth without
incorporating subject-specific personalization related to the
tumor natural history. Besides this problem, this early study
is limited by the feature design and selection components.
Specifically, hand-crafted features are extracted to describe
each isolated voxel (without context information). These fea-
tures could be compromised by the limited understanding
of tumor growth, and some of them are obtained in an
unsupervised manner. Furthermore, some features may not
be generally effective for other tumors, e.g., the tissue type
features (cerebrospinal fluid, white and grey matter) in brain
tumors [15] are not fit for liver or pancreatic tumors. Moreover,
considering that the prediction of tumor growth pattern is
challenging even for human experts, the low-level features
used in this study may not be able to represent complex
discriminative information.

Deep neural networks [16] are high capacity trainable
models with a large set of (∼ 15 M) parameters. By optimizing
the massive amount of network parameters using gradient
backpropagation, the network can discover and represent in-
tricate structures from raw data without any type of feature-
engineering. In particular, deep convolutional neural networks
(ConvNets) [17], [18] have significantly improved perfor-
mance in a variety of traditional medical imaging applications
[19], including lesion detection [20], anatomy segmentation
[21], and pathology discrimination [22]. The basic idea of
these applications is using deep learning to determine the cur-
rent status of a pixel or an image (whether it belongs to object
boundary/region, or certain category). The ConvNets have also
been successfully used in prediction of future binary labels
at image/patient level, such as survival prediction of patients
with brain and lung cancer [23]–[25]. Another direction of
future prediction is on pixel-level, which reconstructs the entire
tumor volume, and therefore characterize the size, shape and
involved region of a tumor. Moreover, a patient may have a
number of tumors and they may have different growth patterns
and characteristics. A single prediction for the patient would
be ambiguous. In all, pixel-level prediction is more desirable
for precision medicine, as it can potentially lead to better
treatment management and surgical planning. In this work,
we are investigating whether deep ConvNets are capable of
predicting the future status at the pixel/voxel level for medical
problem.

More generally, in computer vision and machine learning
community, the problem of modeling spatio-temporal infor-
mation and predicting the future have attracted lots of research

interest in recent years. The spatio-temporal ConvNet models
[26], [27], which explicitly represent the spatial and temporal
information as RGB raw intensity and optical flow magnitude
[28], respectively, have shown outstanding performance for
action recognition. To deal with the modeling of future status,
recurrent neural network (RNN) and ConvNet are two popular
methods. RNN has a “memory” of the history of previous
inputs, which can be used to influence the network output [29].
RNN is good at predicting the next word in a sequence [16],
and has been used to predict the next image frames in video
[30]–[32]. ConvNet with fully convolutional architecture can
also be directly trained to predict next images in video [33] by
feeding previous images to the network. However, the images
predicted by both RNN and fully ConvNet are blurry, even
after re-parameterizing the problem of predicting raw pixels
to predicting pixel motion distribution [32], or improving the
predictions by multi-scale architecture and adversarial training
[33]. Actually, directly modeling the future raw intensities
might be an over-complicated task [34]. Therefore, predicting
the future high-level object properties, such as object bound-
ary [35] or semantic segmentation [34], has been exploited
recently. It is also demonstrated in [35] that the fully ConvNet-
based method can produce more accurate boundary prediction
in compared to the RNN-based method. In addition, fully
ConvNet has shown its strong ability to predict the next status
at image-pixel level – as a key component in AlphaGo [36],
[37], fully ConvNets are trained to predict the next move
(position of the 19× 19 Go game board) of Go player, given
the current board status, with an accuracy of 57%.

Therefore, in this paper, we investigate whether ConvNets
can be used to directly represent and learn the two fundamental
processes of tumor growth (cell-invasion and mass-effect)
from multi-model tumor imaging data at multiple time points.
Moreover, given the current state information in the data,
we determine whether the ConvNet is capable of predicting
the future state of the tumor growth. Our proposed ConvNet
architectures are partially inspired by the mixture of policy and
value networks for evaluating the next move/position in game
of Go [37], as well as the integration of spatial and temporal
networks for effectively recognizing action in videos [26],
[27]. In addition to x and y direction optical flow magnitudes
(i.e., 2-channel image input) used in [26], [27], we add the
flow orientation information to form a 3-channel input, as the
optical flow orientation is crucial to tumor growth estimation.
In addition, we apply a personalization training step to our
networks which is necessary and important to patient-specific
tumor growth modeling [4]–[6], [13]. Furthermore, we focus
on predicting future labels of tumor mask/segmentation, which
is found to be substantially better than directly predicting and
then segmenting future raw images [34]. Finally, considering
that the longitudinal tumor datasets spanning multiple years
are very hard to obtain, the issue of small dataset is alleviated
by patch oversampling strategy and pixel-wise ConvNet learn-
ing (e.g., only a single anatomical MR image is required to
train a ConvNet for accurate brain image segmentation [21]),
in contrast to the fully ConvNet used in [34], [35], [37] which
is more efficient but may lose labeling accuracy.

The main contributions of this paper can be summarized
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Fig. 2. Basic idea of the voxel-wise prediction of tumor growth based on cell
invasion and expansion growth information.

as: 1) To the best of our knowledge, this is the first time to
use learnable ConvNet models for explicitly capturing these
two fundamental processes of tumor growth. 2) The invasion
network can make its prediction based on the metabolic
rate, cell density and tumor boundary, all derived from the
multi-model imaging data. Mass-effect – the mechanical force
exerted by the growing tumor – can be approximated by the
expansion/shrink motion (magnitude and orientation) of the
tumor mass. This expansion/shrink cue is captured by optical
flow computing [28], [38], based on which the expansion
network is trained to infer tumor growth. 3) To exploit
the inherent correlations among the invasion and expansion
information, we study and evaluate three different network
architectures, named: early-fusion, late-fusion, and end-to-
end fusion. 4) Our proposed ConvNet architectures can be
both trained using population data and personalized to a
target patient. Quantitative experiments on a pancreatic tumor
dataset demonstrate that the proposed method substantially
outperforms a state-of-the-art model-based method [6] in both
accuracy and efficiency. The new method is also much more
efficient than our recently proposed group learning method
[39] while with comparable accuracy.

II. CONVOLUTIONAL INVASION AND EXPANSION
NETWORKS

The basic idea of our method is using a learned predictive
model to predict whether the voxels in current time point will
be tumor or not at the next time point, as shown in Fig. 2.
The inputs to the predictive model are image patches (sampled
around the tumor region) representing cell invasion and ex-
pansive growth information that are derived from multimodal
imaging data. The corresponding outputs are binary prediction
labels: 1 (if the input patch center will be in tumor region at
the next time point) or 0 (otherwise). The overview of learning
such a predictive model is described below.

Particularly for the longitudinal tumor data in this study,
every patient has multimodal imaging (dual phase contrast-
enhanced CT and FDG-PET) at three time points spanning
between three to four years, we design a training & per-
sonalization and prediction framework as illustrated in Fig.
3. The imaging data of different modalities and at different
time points are first registered and the tumors are segmented.
The intracellular volume fraction (ICVF) and standardized
uptake value (SUV) [4] are computed. Along with tumor
mask, a 3-channel image that reveals both functional and
structural information about the tumor’s physiological status
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Fig. 3. Overview of the proposed framework for predicting tumor growth.
The upper part is model training (learn population trend) & personalization
and the lower part is unseen data prediction. The blue and purple empty boxes
indicate the data used for generating invasion information; the yellow empty
boxes for expansion information.

serve as the input of invasion subnetwork. The input of the
expansion subnetwork is a 4-channel image, containing the
3-channel optical flow image [38] (using a color encoding
scheme for flow visualization [38]) carrying the growing
motion, and the growth map of tumor mass across time1
and time2. In the training & personalization stage, voxel-
wise ConvNets are trained from all the pairs of time points
(time1/time2, time2/time3, and (time1→time2)/time3) from
population data, and then personalized on pair of time1/time2
from personalized data by adjusting model parameters. Note
that (time1→time2) means the expansion data from time1 to
time2, and time3 provides data label (future tumor or not). In
the prediction stage, given the data of target patient at time1
and time2, invasion and expansion information are fed into
the personalized predictive model to predict the tumor region
at a future time point 3 in a voxel-wise manner. It should be
pointed out that the training and personalization/test sets are
separated at the patient-level, and the testing data (predicting
time3 based on time1 and time2 of the target patient) is totally
unseen for the predictive model.

A. Learning Invasion Network

1) Image Processing and Patch Extraction
To establish the spatial-temporal relationship of tumor

growth along different time points, the multi-model imaging
data are registered based on mutual information and imaging
data at different time points are aligned using the tumor center
[6]. After that, three types of information (SUV, ICVF, and
tumor mask, refer to the left panel in Fig. 4 as an example)
related to tumor property are extracted from the multimodal
images and used as a three-channel input to the invasion
ConvNet model.

(1) The FDG-PET characterizes regions in the body which
are more active and need more energy to maintain existing
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Fig. 4. Some examples of positive (center panel) and negative (right panel)
training samples. In the left panel, the pink and green bounding boxes at the
current time illustrate the cropping of a positive sample and a negative sample
from multimodal imaging data. Each sample is a three-channel RGB image
formed by the cropped SUV, ICVF, and mask at the current time. The label
of each sample is determined by the location of corresponding bounding box
center at the next time - inside tumor (pink): positive; outside tumor (green):
negative.

tumor cells and to create new tumor cells. This motivates us
to use FDG-PET to measure metabolic rate and incorporate it
in learning the tumor predictive model. SUV is a quantitative
measurement of the metabolic rate [4]. To adapt to the Con-
vNets model, the SUV values from PET images are magnified
by 100 followed by a cutting window [100 2600] and then
transformed linearly to [0 255].

(2) Tumor grade is one of the most important prognostica-
tors, and is determined by the proliferation rate of the neo-
plastic cells [40]. This motivates us to extract the underlying
physiological parameter related to the cell number. ICVF is
an representation of the normalized tumor cell density, and
is computed from the registered dual-phase contrast-enhanced
CT:

ICVF = 1− HUpost tumor −HUpre tumor

E[HUpost blood −HUpre blood]
×(1−Hct) (1)

where HUpost tumor, HUpre tumor, HUpost blood, and
HUpre blood are the Hounsfield units of the post- and pre-
contrast CT images at the segmented tumor and blood pool
(aorta), respectively. E[•] represents the mean value. Hct is
the hematocrit which can be obtained from blood samples,
thus the ICVF of the tumor is computed using the ICVF
of blood (Hct) as a reference. The resulting ICVF values
are magnified by 100 (range between [0 100]) for ConvNets
input.

(3) Tumor stage is another important prognosticator, and is
determined by the size and extend of the tumor [40]. Previous
studies have used the tumor mask/boundary to monitor the
tumor morphological change and estimate model parameters
[8], [9], [11]. In this study, following [6], the tumors are
segmented by a semiautomatic level set algorithm with region
competition [41] on the post-contrast CT image to form tumor
masks with binary values (0 or 255).

As illustrated in Fig. 2, to train a ConvNet to distinguish
between future tumor and future non-tumor voxels, image
patches of size 17 × 17 voxels ×3 – centered at voxels near
the tumor region at the current time point – are sampled from
four channels of representations reflecting and modeling the
tumor’s physiological status. Patches centered inside or outside
of tumor regions at the next time point are labeled as “1”
and “0”, serving as positive and negative training samples,

respectively. This patch based extraction method allows for
embedding the context information surrounding the tumor
voxel. The voxel (patch center) sampling range is restricted
to a bounding box of ±15 pixels centered at the tumor
center, as the pancreatic tumors in our dataset are < 3 cm
(≈ 30 pixels) in diameter and are slow-growing. To avoid the
classification bias towards the majority class (non-tumor) and
to improve the accuracy and convergence rate during ConvNet
training [18], [22], we create a roughly balanced training set by
proportionally under-sampling the non-tumor patches. A few
examples of positive and negative patches of SUV, ICVF, and
mask encoded in three-channel RGB color images are shown
in Fig. 4.

2) Network Architecture
We use a six-layer ConvNet adapted from AlexNet [18],

which includes 4 convolutional (conv) layers and 1 fully
connected (fc) layers (cf. upper panel in Fig. 5). The inputs
are of size 17× 17× 3 image patch stacks, where 3 refers to
the tumor status channels of SUV, ICVF, and tumor mask. All
conv layer filters are of size 3 × 3, with padding and stride
of 1. The number of filters from conv1 to conv4 layers are
64, 128, 256, and 512, respectively. Max-pooling is performed
over 3×3 spatial windows with stride 2 for conv1 and conv4
layers. Local response normalization is used for conv1 and
conv2 layers using the same setting as [18]. The fc5 layer
contains 256 rectifier units and applies “dropout” to reduce
overfitting. All layers are equipped with the ReLU (rectified
linear unit) activation function. The output layer is composed
of two neurons corresponding to the classes future tumor or
non-tumor, and applies a softmax loss function. The invasion
ConvNet is trained on image patch-label pairs from scratch on
all pairs of time points (time1/time2 and time2/time3) from the
population dataset.

B. Learning Expansion Network

1) Image Processing and Patch Extraction
Unlike the invasion network, which performs predictions

from static images, the expansion network accounts for image
motion information. Its input images, of size 17×17×4, cap-
ture expansion motion information between two time points.
3 channels derive from a color-coded 3-channel optical flow
image, and the 4th from a tumor growth map between time1
and time2. Such images explicitly describe the past growing
trend of tumor mass, as an image-based approximation of the
underlying biomechanical force exerted by the growing tumor.
These patches are sampled using the same restriction and
balancing schemes applied for the invasion network (Section
II-A1).

More specifically, for a pair of consecutive tumor mask im-
ages at time1 and time2 (Fig. 6 (a)-(b)), we use the algorithm
in [28] for optical flow estimation. The computed dense optical
flow maps are a set of spatially coordinated displacement
vector fields, which capture the displacement movements for
all matched pairs of voxels from time1 to time2. By utilizing
the color encoding scheme for flow visualization in [38], [42],
the magnitude and orientation of the vector field can be formed
as a 3-channel color image (Fig. 6 (d)). As depicted in the
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Fig. 5. ConvNet architecture for late fusion of the invasion and expansion networks for predicting tumor growth.
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Fig. 6. An example of color-coded optical flow image (d) generated based on the tumor mask pair at time 1 (a) and time 2 (b). The flow field color coding
map is shown in (e), where hue indicates orientation and saturation indicates magnitude. In the tumor growth maps (c) and (f), white indicates the previous
tumor region and gray indicates the newly grown tumor region. In (c) and (d), three non-tumor voxels and their surrounding image patches are highlighted
by three colors, which indicate the colors of these voxels in (d). The blue and red voxels indicate left and right growing trend and both become tumors at
time 3 (f), while the pink voxel indicates very small motion and is still non-tumor at time 3 (f). Also note that although some voxels show tiny motion (e.g.,
lower-left location) between time1 and time2, they grow faster from time2 to time3, indicating the nonlinear growth pattern of tumors.

color coding map (Fig. 6 (e)), the magnitude and orientation
are represented by saturation and hue, respectively. This is a
redundant but expressive visualization for explicitly capturing
the motion dynamics of all corresponding voxels at different
time points. Such a representation is also naturally fit for
a ConvNet. The optical flow maps computed between raw
CT image pairs may be noisy due to the inconsistent image
appearance of tumors and surrounding tissues across two time
points. Therefore, a binary tumor mask pair is used to estimate
the optical flow due to it provides the growing trend of tumor
mass. It should be mentioned that both the expansion and
shrink motion can be coded in the 3-channel image.

However, such a representation of tumor growth motion has
a potential limitation – both the voxels locate around the tumor
center and at background have very small motion, which may
confuse the ConvNet. Therefore, we additionally provide the
past (time1 and time2) locations of tumor by adding a tumor
growth map (Fig. 6 (c)) as the 4th input channel. Specifically,
voxels belong to the overlap region of time1 and time2, newly
growing (expansion) region, shrink region, and background
are assigned values of 255, 170, 85, and 0, respectively. This
strategy implicitly indicates the probabilities of voxels to be
tumor or not in the future.

2) Network Architecture
The expansion subnetwork has the same architecture as

its invasion counterpart (cf. Section II-A2 and lower panel
in Fig. 5), and is trained to learn from our motion-based
representations and infer the future involvement regions of
the tumor. This network is trained from scratch on differ-
ent time point configurations ((time1→time2)/time3) of the
population data set. In [14], optical flow is used to predict

the future tumor position in a scan, and the future motion
of a voxel is directly predicted by a linear combination of
its past motions, which may be over simplified. Our main
difference is that the prediction is based on the nonlinear
ConvNet learning of 2D motion and tumor growth maps
where boundary/morphological information in a local region
surrounding each voxel is maintained.

C. Fusing Invasion and Expansion Networks
To take advantage of the invasion-expansion information,

we study a number of ways of fusing the invasion and expan-
sion networks. Different fusion strategies result in significant
different number of parameters in the networks.

1) Two-Stream Late Fusion
The two-stream architecture treats the appearance and mo-

tion cues separately and makes the prediction respectively. The
fusion is achieved by averaging decision/softmax scores of
two subnetworks, as shown in Fig. 5. This method is denoted
as late fusion. The invasion and expansion subnetworks are
trained on all time-point pairs (time1/time2 and time2/time3)
and triplets ((time1→time2)/time3) of the population data,
respectively. Since they are trained independently, late fusion
is not able to learn the voxel-wise correspondences between
invasion and expansion features, i.e., registering appearance
and motion cues. For example, what are the cell density and
energy when a local voxel exhibits fast growing trend? Late
fusion doubles the number of network parameters compared
to invasion or expansion subnetworks only.

2) One-Stream Early Fusion
In contrast to late fusion, we present an early fusion archi-

tecture, which directly stacking the 3-channel invasion and 4-
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Fig. 7. Two-stream end-to-end fusion of the invasion and expansion networks for predicting tumor growth. The (convolution) fusion is after the conv4
(ReLU4) layer.

channel expansion images as a 7-channel input to the ConvNet.
The same network architecture as invasion/expansion network
is used. Different from late fusion, early fusion can only be
trained on time2/time3 pairs (without time1/time2 pairs) along
with triplets ((time1→time2)/time3) of the population data.
Therefore, less training samples can be used. Early fusion
is able to establish voxel-wise correspondences. However, it
leaves the correspondence to be defined by subsequent layers
through learning. As a result, information in the motion image
may not be able to be well captured by the network, since
there is more variability in the appearance images (i.e., SUV
and ICVF). Early fusion keeps almost the same number of
parameters as a single invasion or expansion network.

3) Two-Stream End-to-End Fusion
To jointly learn the nonlinear static and dynamic tumor

information while allocating enough network capacity to both
appearance and motion cues, we introduce a two-stream end-
to-end fusion architecture. As shown in Fig. 7, the two
subnetworks are connected by a fusion layer that adds a
convolution on top of their conv4 layers. More specifically, the
fusion layer first concatenates the two feature maps generated
by conv4 (after ReLU4) and convolves the stacked data with
1 × 1 × 512 convolution filters with padding and stride of 1,
then ReLU5 is attached and max-pooling 3× 3 is performed.
The outputs of the fusion layer are fed into a subsequent
fully-connected layer (fc5). As such, the fusion layer is able
to learn correspondences of two compact feature maps that
minimize a joint loss function. Fusion at ReLU4 instead
of fc layer is because the spatial correspondences between
invasion and expansion are already collapsed at the fc layer;
fusion at the last conv layer has been demonstrated to have
higher accuracy in compared to at earlier conv layers [27].
End-to-end framework is trained on the same time pairs and
triplets as early fusion, without time1/time2 pairs compared
to late fusion. End-to-end fusion removes nearly half of the
parameters in the late fusion architecture as only one tower of
fc layer is used after fusion.

D. Personalizing Invasion and Expansion Networks

Predictive model personalization is a key step of model-
based tumor growth prediction [4]–[6], [13]. In statistical
learning, model validation is a natural way to optimize the
pre-trained model. Particularly, given tumor status at time1 and

time2 already known (predict time3), the model personaliza-
tion includes two steps. In the first step, the invasion network
is trained on population data and time1/time2 of the target
patient is used as validation. Training is terminated after a
pre-determined number (30) of epochs, after which the model
snapshot with the lowest validation loss on the target patient
data is selected. Since there are no corresponding validation
datasets for the expansion network, early fusion, and end-to-
end fusion, their trainings are terminated after the empirical
number of 20 epochs, in order to reduce the risk of overfitting.

To better personalize the invasion network to the target
patient, we propose a second step that optimizes an objective
function which measures the agreement between any pre-
dicted tumor volume and its corresponding future ground truth
volume on the target patient. This is achieved by directly
applying the invasion network to voxels in a tumor growth
zone in the personalization volume, and later thresholding the
probability values of classification outputs to reach the best
objective function. Dice coefficient measures the agreement
between ground truth and predicted volumes, and is used as
the objective function is this study:

Dice =
2× TPV

Vpred + Vgt
(2)

where TPV is the true positive volume – the overlapping
volume between the predicted tumor volume Vpred and the
ground truth tumor volume Vgt. The tumor growth zone is set
as a bounding box surrounding the tumor, with pixel distances
Nx, Ny , and Nz from the tumor surface in the x, y, and z
directions, respectively. The personalized threshold of invasion
network is also used for expansion network and the three
fusion networks.

E. Predicting with Invasion and Expansion Networks

During testing, given the imaging data at time1 and time2
for the target patient, one of the frameworks, the personalized
invasion network, expansion network, late fusion, early fusion,
or end-to-end fusion could be applied to predict the scores
for every voxels in the growth zone at the future time3. The
static information from time2 serves as invasion information,
while the motion/change information between time1 and time2
represents the expansion information. Late fusion and end-to-
end fusion feed the static and motion information to invasion
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TABLE I
TUMOR INFORMATION AT THE 1ST, 2ND, AND 3RD TIME POINTS OF TEN

PATIENTS.

1st-2nd 2nd-3rd

Patient ID Days Growth (%) Days Growth (%) Size (cm3, 3rd)

1 384 34.6 804 33.4 2.3
2 363 15.3 363 10.7 1.4
3 378 18.9 372 7.5 0.4
4 364 150.1 364 28.9 3.1
5 426 41.5 420 68.6 3.8
6 372 7.4 360 12.5 6.3
7 384 13.6 378 -3.9 1.6
8 168 18.7 552 18.7 3.2
9 363 16.9 525 34.7 0.3
10 196 -28.9 567 17.7 0.9

and expansion subnetworks, separately, while early fusion
concatenates both static and motion information as input to
a one-stream ConvNet.

III. EXPERIMENTAL METHODS

A. Data and Protocol

Ten patients (six males and four females) with von Hippel-
Lindau (VHL) disease, each with a pancreatic neuroen-
docrine tumor (PanNET), are studied in this paper. The VHL-
associated PanNETs are commonly found to be nonfunc-
tioning with malignant (cancer) potential [3], and can often
be recognized as well-demarcated and solid masses through
imaging screens [43]. For the natural history of this kind
of tumor, around 60% patients demonstrate nonlinear tumor
growth, 20% stable and 20% decreasing (over a median
follow-up duration of 4 years) [7]. Treatments of PanNETs
include active surveillance, surgical intervention, and medical
treatment. Active surveillance is undertaken if a PanNET
does not reach 3 cm in diameter or a tumor-doubling time
<500 days; other wise the PanNET should be resected due
to high risk of metastatic disease [3]. Medical treatment
(e.g., everolimus) is for the intermediate-grade (PanNETs
with radiologic documents of progression within the previous
12 months), advanced or metastatic disease [44]. Therefore,
patient-specific prediction of spatial-temporal progression of
PanNETs at earlier stage is desirable, as it will assist making
decision within different treatment strategies to better manage
the treatment or surgical planning.

In our dataset, each patients has three time points of
contrast-enhanced CT and FDG-PET imaging spanning three
to four years, with the time interval of 405±133 days (average
± std.). The average age of the patients at time1 is 46.9 ± 13.2
years. The image pixel sizes range between 0.68 × 0.68 × 1
mm3 — 0.98× 0.98× 1 mm3 for CT and 2.65× 2.65× 1.5
mm3 — 4.25× 4.25× 3.27 mm3 for PET. The tumor growth
information of all patients is shown in Table I. Most tumors
are slow growing, while two are more aggressive and two
experience shrinkage. Some tumors keep a similar growing
rate as their past trend, while others have varying growing
rates.

B. Implementation Details

A total of 45,989 positive and 52,996 negative image
patches is used for the invasion network in late fusion, and
23,448 positive and 25,896 negative image patches for both the
invasion network and expansion network in other fusion (i.e.,
early and end-to-end), extracted from 10 patients. Each image
patch is subtracted by the mean image patch over the training
set. Data augmentation is not performed since we could not
observe improvements in a pilot study. The following hyper-
paramaters are used: initial learning rate – 0.001, decreased by
a factor of 10 at every tenth epoch; weight decay – 0.0005;
momentum – 0.9; mini-batch size – 512. We use an aggressive
dropout ratio of 0.9 to improve generalization. Lower dropout
ratios (e.g., 0.5) do not decrease performance significantly.
The ConvNets are implemented using Caffe platform [45]. The
parameters for tumor growth zone are set as Nx = 3, Ny = 3,
and Nz = 3 for prediction speed concern. We observe that
the prediction accuracy is not sensitive to the choice of these
parameters, e.g., Nx|y|z ≥ 4 results in similar performance.
For the model personalization via Dice coefficient objective
function, we vary the model thresholding values in the range
of [0.05, 0.95] with 0.05 intervals. The proposed method is
tested on a DELL TOWER 7910 workstation with 2.40 GHz
Xeon E5-2620 v3 CPU, 32 GB RAM, and a Nvidia TITAN
X Pascal GPU of 12 GB of memory.

C. Evaluation Methods

The proposed method is evaluated using leave-one-out
cross-validation. In each of the 10 evaluations, 9 patients are
used as the population training data to learn the population
trend, the time1/time2 of the remaining patient is used as the
personalization data set for invasion network, and time3 of the
remaining patient as the to-be-predicted testing set. We obtain
the model’s final performance values by averaging results
from the 10 cross validations. The numbers of parameters in
each of the proposed network are reported, and the prediction
performances are evaluated using measurements at the third
time point by recall, precision, Dice coefficient (defined in
Eq. 2), and RVD (relative volume difference) as in [6], [39].

recall =
TPV

Vgt
; precision =

TPV

Vpred
; RVD =

Vpred − Vgt

Vgt
(3)

To establish a benchmark for comparisons, we implement
a linear growth model that assumes that tumors would keep
their past growing trend in the future. More specifically, we
first compute the radial expansion/shrink distances on tumor
boundaries between the first and second time points, and then
expand/shrink the tumor boundary at the second time point to
predict the third with the same radial distances. Furthermore,
we compare the accuracy and efficiency of our method with
two state-of-the-art tumor growth prediction methods [6], [39]
which have been evaluated on a subset (7 patients, without
patient 4, 7, 10 in Table I) of the same dataset. Finally, to
show the importance of model personalization, the prediction
performance with and without our personalization method (i.e.,
optimizing Eq. (2)) are compared.
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Day 0 Day 426 Day 846

Invasion Net

Recall: 91.9%; Precision: 89.0%;

Dice: 90.4%; RVD: 3.2%

(a) Ground truth of tumor growth at different time points.

(b) Prediction at the third time point (Day 846).

Expansion Net

Recall: 85.0%; Precision: 96.9%;

Dice: 90.5%; RVD: 12.3%

Late Fusion

Recall: 89.8%; Precision: 93.3%;

Dice: 91.5%; RVD: 3.7%

Early Fusion

Recall: 88.8%; Precision: 92.4%;

Dice: 90.6%; RVD: 4.0%

Linear Growth

Recall: 86.7%; Precision: 80.8%;

Dice: 83.6%; RVD: 7.3%

End-to-End Fusion

Recall: 91.7%; Precision: 91.3%;

Dice: 91.5%; RVD: 0.4%

Fig. 8. An example (patient 5) shows the tumor growth prediction by our
individual and fusion networks. (a) The segmented (ground truth) tumor
contours and volumes at different time points. (b) The prediction results at
the third time point, with red and green represent ground truth and predicted
tumor boundaries, respectively.

IV. RESULTS

Fig. 8 shows a good prediction results obtained by our
individual and fusion networks. In this example (patient 5),
the tumor is growing in a relatively steady trend. Therefore, all
the predictive models including the linear model can achieve
promising prediction accuracy. Our methods, especially the
network fusions (e.g., late and end-to-end) balance the recall
and precision of individual networks, yield the highest ac-
curacy. Fig. 9 shows the results of patient 7. In this case,
the tumor demonstrates a nonlinear growth trend, and its size
first increases from time1 to time2 but decreases a little bit
from time2 to time3. Therefore, all the personalized predictive
models overpredicted the tumor size (recall is higher than
precision). However, our models especially the two-stream late
fusion can still generate promising prediction result.

Table II presents the overall prediction performance on 10
patients. Compared to the baseline linear growth method, all
our methods show substantially higher performance. The per-
formance of invasion and expansion networks are comparable.
Fusion of the two networks can further improve the prediction
accuracy, especially for the RVD measure. Two-stream late
fusion achieves the highest mean values with Dice coefficient
of 85.9 ± 5.6% and RVD of 8.1 ± 8.3%, but requires nearly
twice of the model parameters in compared to early fusion.
End-to-end fusion has the second highest accuracy with much
less network parameters than late fusion. Nevertheless, this
suggests that the mechanism of fusion ConvNets leverages
the complementary relationship between static and dynamic
tumor information.

Table III compares our methods with two state-of-the-art
methods [6], [39] on a subset (seven patients) of our data.
Out of ten patients, three patients (patient 4, 7, and 10 in
Table I) with aggressive and shrink tumors are not included
in the experiment. As a result, the performances on seven
patients (Table III) are better than that on ten patients (Table

Day 0 Day 384 Day 762

Invasion Net

Recall: 91.5%; Precision: 81.3%;

Dice: 86.1%; RVD: 12.6%

(a) Ground truth of tumor growth at different time points.

(b) Prediction at the third time point (Day 762).

Expansion Net

Recall: 91.0%; Precision: 79.8%;

Dice: 85.0%; RVD: 14.1%

Late Fusion

Recall: 90.7%; Precision: 83.3%;

Dice: 86.9%; RVD: 8.8%

Early Fusion

Recall: 92.9%; Precision: 78.8%;

Dice: 85.2%; RVD: 17.9%

Linear Growth

Recall: 89.4%; Precision: 60.7%;

Dice: 72.3%; RVD: 47.2%

End-to-End Fusion

Recall: 95.7%; Precision: 75.5%;

Dice: 84.4%; RVD: 26.7%

Fig. 9. An example (patient 7) shows the tumor growth prediction by our
individual and fusion networks. (a) The segmented (ground truth) tumor
contours and volumes at different time points. (b) The prediction results at
the third time point, with red and green represent ground truth and predicted
tumor boundaries, respectively.

II). Our single network can already achieve better accuracy
than the model-based method (i.e., EG-IM) [6], especially the
invasion network has a much lower/better RVD than [6]. This
demonstrates the highly effectiveness of ConvNets (learning
invasion information) in future tumor volume estimation.
Network fusions further improve the accuracy and achieve
comparable performance with the group learning method [39],
which benefits results from integrating the deep features, hand-
crafted features, and clinical factors into a SVM based learning
framework. Again, the two-stream late fusion performs the
best among the proposed three fusion architectures, with Dice
coefficient of 86.8± 3.4% and RVD of 6.6± 7.1%.

The proposed two-stream late fusion ConvNets (our other
architectures are even faster) requires ∼ 5 mins for training
and personalization, and 15 s for prediction per patient, on
average – significantly faster than the model-based approach
in [6] (∼ 24 hrs – model personalization; 21 s – simulation),
and group learning method in [39] (∼ 3.5 hrs – model training
and personalization; 4.8 mins – prediction).

The comparison between with and without personalization
is shown in Table IV. The personalization process significantly
improves the prediction performance especially for predicting
the future tumor volume (i.e., RVD), demonstrating its crucial
role in tumor growth prediction.

V. DISCUSSIONS

Tumor growth prediction is a biophysics process and has
long been solved via mathematical modeling. In this pa-
per, we tackle this task using novel ConvNet architectures
of convolutional invasion and expansion neural networks,
with respect to the cell invasion and mass-effect processes,
jointly. Our new approach demonstrates promising accuracy
and highly efficiency. Although the small data size does not
permit statistical testing, our prediction method clearly shows
higher mean and lower std. than the state-of-the-art modeling



IEEE TRANSACTIONS ON MEDICAL IMAGING 9

TABLE II
OVERALL PERFORMANCE ON 10 PATIENTS – BASELINE LINEAR PREDICTIVE MODEL, INVASION NETWORK, EXPANSION NETWORK, EARLY FUSION, LATE

FUSION, AND END-TO-END FUSION. RESULTS ARE ESTIMATED BY THE RECALL, PRECISION, DICE COEFFICIENT, AND RELATIVE VOLUME DIFFERENCE
(RVD), AND ARE REPORTED AS: MEAN ± STD [MIN, MAX]. THE NUMBERS OF PARAMETERS FOR EACH MODEL ARE PROVIDED.

Recall (%) Precision (%) Dice (%) RVD (%) #parameters
Linear 84.5±7.0 [73.3, 97.3] 69.5±8.0 [60.7, 82.3] 75.9±5.4 [69.5, 85.0] 23.1±18.5 [5.9, 58.8] -
Invasion 86.9±9.4 [63.7, 97.0] 83.3±5.6 [74.7, 90.2] 84.6±5.1 [73.0, 90.4] 11.5±11.3 [2.3, 30.0] 8.11M
Expansion 87.6±8.6 [68.3, 96.5] 82.9±7.6 [76.5, 97.2] 84.8±5.4 [73.2, 91.1] 13.8±6.3 [1.0, 23.5] 8.11M
Early fusion 86.4±7.9 [66.6, 94.8] 84.7±5.8 [77.0, 92.7] 85.2±5.2 [73.9, 90.6] 9.2±7.3 [2.4, 19.6] 8.11M
Late fusion 86.9±8.8 [64.0, 95.5] 85.5±4.9 [78.6, 91.3] 85.9±5.6 [72.8, 91.7] 8.1±8.3 [1.0, 24.2] 16.22M
End-to-end 87.5±8.1 [70.0, 96.9] 84.1±5.6 [75.5, 91.3] 85.5±4.8 [76.5, 91.5] 9.0±10.1 [0.3, 26.7] 10.18M

TABLE III
COMPARISON OF PERFORMANCE ON 7 PATIENTS – BASELINE LINEAR PREDICTIVE MODEL, STATE-OF-THE-ART MODEL-BASED [6], STATISTICAL GROUP
LEARNING [39], AND OUR MODELS. RESULTS ARE ESTIMATED BY THE RECALL, PRECISION, DICE COEFFICIENT, AND RELATIVE VOLUME DIFFERENCE

(RVD), AND ARE REPORTED AS: MEAN ± STD [MIN, MAX]. EG-IM-FEM* HAS HIGHER PERFORMANCE THAN EG-IM, BUT IT HAS SOME ISSUES
MENTIONED BY THE AUTHORS (SEC. VI IN [6]).

Recall (%) Precision (%) Dice (%) RVD (%)
Linear 84.3±3.4 [78.4, 88.2] 72.6±7.7 [64.3, 82.1] 77.3±5.9 [72.3, 85.1] 16.7±10.8 [5.2, 34.3]
EG-IM [6] 83.2±8.8 [69.4, 91.1] 86.9±8.3 [74.0, 97.8] 84.4±4.0 [79.5, 92.0] 13.9±9.8 [3.6, 25.2]
EG-IM-FEM* [6] 86.8±5.8 [77.6, 96.1] 86.3±8.2 [72.7, 96.5] 86.1±3.2 [82.8, 91.7] 10.8±11.2 [2.3, 32.3]
Group learning [39] 87.9±5.0 [81.4, 94.4] 86.0±5.8 [78.7, 94.5] 86.8±3.6 [81.8, 91.3] 7.9±5.4 [2.5, 19.3]
Invasion 88.1±4.6 [81.4, 94.3] 84.4±5.6 [75.0, 90.2] 86.1±3.6 [80.8, 90.4] 6.6±8.5 [2.3, 25.8]
Expansion 90.1±6.3 [79.1, 96.5] 81.9±6.9 [76.5, 96.9] 85.5±3.8 [78.7, 90.5] 14.2±7.6 [1.0, 23.5]
Early fusion 88.2±4.2 [81.9, 94.8] 85.2±6.5 [77.0, 92.7] 86.5±4.0 [80.7, 90.6] 7.5±6.1 [2.5, 19.0]
Late fusion 89.1±4.3 [83.4, 95.5] 84.9±5.2 [78.6, 93.3] 86.8±3.4 [81.8, 91.5] 6.6±7.1 [1.0, 21.5]
End-to-end 88.8±5.9 [79.1, 96.9] 84.8±5.6 [77.8, 91.3] 86.6±4.4 [80.5, 91.5] 6.6±8.3 [0.4, 24.4]

TABLE IV
COMPARISON BETWEEN WITH AND WITHOUT PERSONALIZATION (W/O P)
ON ALL 10 PATIENTS. FOR MORE CONCISELY, ONLY DICE COEFFICIENT,

AND RELATIVE VOLUME DIFFERENCE (RVD) ARE REPORTED.

Dice (%) RVD (%)
Invasion w/o p 77.5±7.8 [65.1, 90.5] 51.4±31.8 [3.0, 105.3]
Expansion w/o p 78.0±7.4 [67.7, 90.0] 50.6±24.1 [15.6, 93.2]
Early fusion w/o p 81.3±6.4 [70.7, 90.2] 36.3±24.6 [10.1, 81.7]
Late fusion w/o p 78.3±6.9 [67.7, 90.3] 49.9±25.9 [11.5, 92.7]
End-to-end w/o p 80.8±6.4 [72.8, 91.1] 38.5±24.2 [5.3, 74.6]
Invasion 84.6±5.1 [73.0, 90.4] 11.5±11.3 [2.3, 30.0]
Expansion 84.8±5.4 [73.2, 91.1] 13.8±6.3 [1.0, 23.5]
Early fusion 85.2±5.2 [73.9, 90.6] 9.2±7.3 [2.4, 19.6]
Late fusion 85.9±5.6 [72.8, 91.7] 8.1±8.3 [1.0, 24.2]
End-to-end 85.5±4.8 [76.5, 91.5] 9.0±10.1 [0.3, 26.7]

method [6] when the same preprocessing (e.g., registration,
segmentation) procedure as the pipeline in [6] is used.

Besides using deep learning instead of mathematical mod-
eling, the main difference against [6] is using the information
from other patients as population prior learning followed by
personalization using the same patient’s 1st and 2nd time point
data. Ref. [6] does not use other patients information but di-
rectly trains on the 1st and 2nd time points to simulate the 3rd
time point tumor growth for the same patient, which, in some
sense, may be more likely to overfit. Our prior population
learning may behave as a beneficial regularization to constrain
the personalized predictive model. As such, compared to the
model-based prediction, our method is better at predicting the
tumors which will have a different (even opposite) growing
trend to their past trend. An example can be seen in Fig. 9
for patient 7. Actually, on another challenging case – patient
4 (aggressive growth from time1 to time2), our late fusion
yields very promising prediction with Dice of 91.7% and
RVD of 2.2%. The worst case is for patient 10 (shrink from
time1 to time2), late fusion has a Dice of 72.8% and RVD
of 24.2%. We also investigate the performance of our method

without the population data. For example, we only train and
personalize the invasion network on a patient’s target data
(time1/time2 pair) using the same strategy proposed in section
II, and then predict tumor growth at time3. The overall Dice
and RVD on 10 patients are 74.7% and 32.2%, respectively,
substantially worse than the invasion network with population
learning (Dice = 84.6%, RVD = 11.5%).

Model personalization is one of the main novelties of our
deep learning based method. This strategy ensures a robust
prediction performance, and may subsequently benefit more
from the following directions. 1) The Dice coefficient is
used as the objective function. Using RVD as the objective
function (as in [39]) actually result in comparable but (maybe)
slightly lower performance. For example, for the two-stream
late fusion, using RVD as objective function of personaliza-
tion will result in 0.1% lower of Dice and 1.9% larger of
RVD metrics in prediction. The prediction performances with
different objective functions (e.g., weighted combination of
Dice and RVD) need further investigation. 2) Since there is no
validation data for the expansion network (also for other fusion
networks), its personalization empirically follows the invasion
network. A better personalization could be achieved if more
time points would be available (e.g., tumor status at time1,
2, and 3 already known, predict time4). This is actually a
common scenario in practice for many kinds of tumors, such as
predicting time7 based on time1-6 for kidney tumors [13], and
predicting time5 given time1-4 known for brain tumors [14].
Therefore, we could expect better performance given a dataset
spanning more time points. 3) Our predictive models perform
much worse if without personalization. Besides the importance
of personalization, this may be caused by the patch sampling
strategy, which proportionally under-samples negative samples
in a predefined bounding box (section II-A1). As a result, some
‘easy-negatives’ (far from tumor boundary) are involved in the
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training set, lowering the ConvNet’s capacity in discriminating
some ‘hard-negatives’ (close to tumor boundary). Restricting
the patch sampling to the range close to the tumor boundary
without under-sampling has a potential to improve this issue.

A simple linear prediction approach shows the worst perfor-
mance among all the models. This is in agreement with the fact
that PanNETs demonstrate nonlinear growth [3], [7]. The two-
stream late fusion performs slightly better than the one-stream
early fusion and two-stream end-to-end fusion architectures
(Table II and Table III). Probably, the reason is that the late
fusion is trained on more training samples, in compared to
early and end-to-end fusion which cannot use samples of
time1/time2 pairs for model training.

A potential limitation of the current method is that the
crucial tumor biomechanical properties, such as tissue biome-
chanical strain, is not considered. These limitations could
be addressed by fusing our proposed deep learning method
with traditional biomechanical model-based methods. Finally,
although our dataset (ten patients) is already the largest for
this kind of research, it is still too small. Therefore, some
of the results and discussions should be treated with caution.
To evaluate our method, we conduce a leave-one-patient-out
cross-validation, which is a popular error estimation procedure
when the sample size is small. Furthermore, our method
has a personalization stage where patient specific data is
employed to optimize the model generated by the training
data. This strategy can somehow alleviate the small training set
problem. Nevertheless, more training data will likely enhance
our convolutional invasion and expansion networks (an end-
to-end deep learning model). As an ongoing clinical trial in
NIH, we are collecting more longitudinal panNET data and
kidney tumor data. We will validate and extend our method
on the new data.

VI. CONCLUSIONS

In this paper, we show that deep ConvNets can effectively
represent and learn both cell invasion and mass-effect in
tumor growth prediction. Composite images encoding static
and dynamic tumor information are fed into our ConvNet
architectures to predict the future involvement region of pan-
creatic tumors. Our method surpasses the state-of-the-art math-
ematical model-based method [6] in both speed and accuracy,
and is much more efficient than our recently proposed group
learning method [39]. The invasion and expansion networks
alone predict the tumor growth at higher accuracies than [6],
and our proposed fusion architectures further improve the
prediction accuracy. Two-stream end-to-end fusion might be a
trade-off between accuracy and generalization compared with
early and late fusions.
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