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A scalable physician-level deep learning algorithm
detects universal trauma on pelvic radiographs
Chi-Tung Cheng 1,7, Yirui Wang 2,7, Huan-Wu Chen3, Po-Meng Hsiao4, Chun-Nan Yeh5, Chi-Hsun Hsieh1,

Shun Miao2, Jing Xiao2, Chien-Hung Liao 1,6✉ & Le Lu 2

Pelvic radiograph (PXR) is essential for detecting proximal femur and pelvis injuries in trauma

patients, which is also the key component for trauma survey. None of the currently available

algorithms can accurately detect all kinds of trauma-related radiographic findings on PXRs.

Here, we show a universal algorithm can detect most types of trauma-related radiographic

findings on PXRs. We develop a multiscale deep learning algorithm called PelviXNet trained

with 5204 PXRs with weakly supervised point annotation. PelviXNet yields an area under the

receiver operating characteristic curve (AUROC) of 0.973 (95% CI, 0.960–0.983) and an

area under the precision-recall curve (AUPRC) of 0.963 (95% CI, 0.948–0.974) in the

clinical population test set of 1888 PXRs. The accuracy, sensitivity, and specificity at the

cutoff value are 0.924 (95% CI, 0.912–0.936), 0.908 (95% CI, 0.885–0.908), and 0.932

(95% CI, 0.919–0.946), respectively. PelviXNet demonstrates comparable performance with

radiologists and orthopedics in detecting pelvic and hip fractures.
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Trauma management is a race against time. A timely,
accurate diagnosis with appropriate management is the key
to saving lives. High-quality clinical trauma care and

treatment not only rely on physician experience but also require
information from various imaging modalities. Pelvic radiography
is one of the diagnostic imaging modalities commonly used to
evaluate blunt trauma patients. Pelvic radiographs (PXRs) cover
the pelvis and the upper femur area, providing diagnostic value
for orthopedic injuries in these regions, including hip fracture,
pelvic fracture, hip dislocation, and other associated injuries.

Hip fractures are diagnosed on the basis of these images and
are the most frequently occurring fracture type in elderly people;
however, the misdiagnosis rate ranges from 4 to 9%1, and delayed
diagnosis leads to unfavorable consequences. On the other hand,
pelvic ring fractures are the most life-threatening fracture, with a
mortality rate exceeding 30% in unstable patients2. In individuals
with these injuries, early diagnosis in the emergency room (ER)
and early management may prevent adverse outcomes3–5. How-
ever, in the stressful and chaotic ER, image-based diagnosis
usually relies on emergency physicians who encounter the patient
first. Moreover, radiologists are not always available 24/7, espe-
cially in local hospitals or rural areas. An effective computer-
aided diagnosis algorithm can prevent misdiagnoses and provides
early warnings for life-threatening conditions.

Deep learning (DL) is a rapidly evolving subcategory of
machine learning and is especially valuable in medical image
analysis6. DL has been shown to be successful in performing
several classification tasks, such as diagnosing skin lesions7,
analyzing retinal images8, classifying chest radiography
abnormalities9,10, and reading neural images11,12. One obstacle
for developing DL algorithms for medical image analysis is
obtaining large-scale annotations of medical images, which is
often labor-intensive and requires special expertise. To this end,
numerous studies have been conducted to train deep convolu-
tional neural networks (DCNNs) using weak labels (i.e., anno-
tations that only indicate the presence/absence of the findings
without specifying the exact location)13–15, which can be auto-
matically or semiautomatically obtained from medical records at
a low cost. For fracture detection, several studies employed
weakly supervised learning to detect fractures in local regions and
demonstrated that the algorithm had a comparable accuracy to
physicians16. Previous studies have shown that DL achieved an
accuracy ranging from 90.6 to 96.1% for detecting hip fractures in
various settings17–21. However, there could be multiple abnormal
findings that appear concurrently in a PXR other than the hip
fracture in a trauma patient. A clinically convincing and useful
computer-aided diagnosis algorithm needs to have a universal
ability to detect various pathologies on a single X-ray image. To
date, few algorithms have demonstrated the ability to detect
abnormalities spanning multiple categories simultaneously in an
image with comparable physician-level performance. As an early
version of our work, a two-stage weakly supervised method22 was
the first to achieve a hip and pelvic fracture detection perfor-
mance that was comparable to that of emergency physicians and
residents. However, the study still showed a significant perfor-
mance gap between the two-stage model and specialized experts
(i.e., orthopedic specialists and radiologists).

In this work, we hypothesize that incorporating location
supervisory signals in training DL detectors can effectively
improve their performance. In general computer vision, object
detection tasks are usually formulated as fully supervised, given
existing annotated datasets (e.g., PASCAL-VOC and MS-
COCO). For common object detection methods, the localization
supervision signal is typically provided in the form of bounding
boxes, which specifies the object’s span in the vertical and hor-
izontal directions. However, defining the bounding box of

trauma-related findings is technically difficult and practically
unreliable. First, extensive clinical experience and intensive labor
are required to accurately annotate bounding boxes for all frac-
ture sites/instances on PXRs. Moreover, unlike objects in natural
images, trauma-related findings on PXRs may not have clear
definitions of instance and boundary, making the bounding box
annotations unreliable. For instance, a pelvic fracture usually
involves multiple anatomical sites with complex morphology and
fragments that lead to difficulty in defining the border, extent,
and number of bounding boxes. Therefore, a DL algorithm with
a cost-effective and flexible annotation scheme is critical and
highly desirable of universal trauma finding detection solutions
for PXRs.

In this study, we developed PelviXNet, a DL detection algo-
rithm trained using point-based annotation, an efficient, flexible,
and informative labeling method to provide local information.
PelviXNet can universally detect all trauma-related radiographic
findings on PXRs, including hip fracture, pelvic area fracture, hip
dislocation, periprosthetic fracture, and femoral shaft fracture.
To the best of our knowledge, this is the first of this type of study:
only detecting one specific (and easier) category of anomalies
given an imaging exam, will render the DL assisted system
limited and less useful in clinics. We trained the model on 5204
PXRs with point-based annotations and evaluated its perfor-
mance in a clinical population test set of 1888 patients, achieving
an area under the receiver operating characteristic curve
(AUROC) of 0.972. Furthermore, an independent study com-
paring PelviXNet with 22 physicians reported accuracies of
99.5% and 94.5% in hip and pelvic fracture detection tasks,
respectively, indicating that PelviXNet outperformed emergency
physicians (95.0 and 90.3%) and residents (94.9 and 89.3%) and
performed comparably to orthopedic specialists and radiologists
(97.4 and 94.0%).

Results
Training set. We retrieved 5204 PXR images that were recorded
from 2008 to 2016 for algorithm development (Fig. 1). A total of
3110 images had acute trauma-related radiographic findings,
resulting in 4357 annotated points (median 1, range 0–7). The
demographic data are shown in Table 1. The images included
2036 (39.1%) hip fracture images, 919 (17.7%) pelvic area fracture
images, 232 (4.5%) images of other abnormalities, and 2094
(40.2%) PXRs without trauma-related radiographic findings. The
PelviXNet yielded an AUROC, sensitivity, and specificity of 0.997,
0.991, and 0.976, respectively, for the development dataset after
training.

Performance with a clinical scenario test set. In 2017, a total of
1888 patients underwent PXR examinations in the emergency
department because of an injury (Fig. 1). The demographic
characteristics are shown in Table 1 and significantly differed
between the test set and the development dataset. The distribu-
tion of the positive images represented the real incidence of the
clinical situation at a trauma center, and only 32.8% of the images
had acute trauma-related findings. Among all cases, 82 (4.3%)
were defined as difficult cases, and 9 (0.5%) were considered
misdiagnoses. Figure 2 demonstrates the universal trauma finding
detection performance of PelviXNet. The AUROC of classifying
the normal and abnormal conditions is 0.972 (95% confidence
interval (CI): 0.960–0.983), and the accuracy, sensitivity, specifi-
city, positive predictive value (PPV), and negative predictive value
(NPV) at the defined cutoff values are 0.924 (95% CI:
0.912–0.936), 0.908 (95% CI: 0.885–0.908), 0.932 (95% CI:
0.919–0.946), 0.867 (95% CI: 0.843–0.890), and 0.954 (95% CI:
0.944–0.964), respectively. Although class imbalance is noted in
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the dataset, the precision-recall (PR) curve still shows a promising
result. The area under the PR curve (AUPRC) is 0.963 (95% CI:
0.948–0.974). Figure 3 shows examples of heatmaps for the
visualization of different acute trauma-related findings.

Among all 57 false-negative images, hip (n= 22, 5.6%) and
pelvic area fractures (n= 23, 15.6%) were the most common
findings. Among the other, relatively rare findings, four hip
dislocations, five periprosthetic fractures, and five femoral shaft
fractures were not identified by PelviXNet (Table 2). Table 3
illustrates the characteristics of the acute trauma-related radio-
graphic findings related to the pelvic area and hip fractures that
were detected or missed by PelviXNet. In summary, PelviXNet
has demonstrated a promising ability to detect hip fractures. Most
of the missed fractures were intracapsular and difficult cases,
which may require confirmation with advanced imaging
modalities. Among the pelvic fractures, PelviXNet could detect
most fracture sites. However, there were still four unstable pelvic
fractures that were missed. A high percentage of the missed cases

were difficult cases. Surprisingly, PelviXNet detected five of the
nine misdiagnosed cases.

Evaluation of the impact of annotation size. The size of the
annotation used for training is a key factor affecting the perfor-
mance of DL models. To understand how PelviXNet is affected by
the annotation size, we conducted experiments to train PelviXNet
with 20% (N= 1040), 40% (N= 2081), 60% (N= 3122), and 80%
(N= 4163) physician annotated PXRs using the same settings
and evaluated the trained models on the PXR2017 dataset. We
also conducted another experiment to train the weakly supervised
fracture detection model22 for comparison using only image-level
labels automatically generated from the clinical diagnosis without
manual annotation from physicians. The comparisons are sum-
marized in Table 4. We observe that the performance of Pel-
viXNet steadily improves (i.e., AUROC from 0.933 to 0.973) as
more physician-annotated PXRs (from N= 1040 to N= 5204)

Fig. 1 The source and distribution of each data set. We included 5204 pelvic radiographs (PXR) from 2008 to 2016 as our development data set to
develop PelviNet. Then we included PXRs from 1888 patients presented in the emergency room from January to December 2017 as our test data set.
In advance, we randomized selected 150 PXRs from the test dataset to compose the PXR150 data set, which was used to perform the physician
comparison test.
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are used for training. The weakly supervised model supervised by
the clinical diagnosis reports an AUROC of 0.967.

Comparison with physician performance. The performance
results of PelviXNet and physicians in analyzing the PXR150
dataset are shown in Table 5. Most physicians performed better in
hip fracture detection than in pelvic fracture detection. The

performance of PelviXNet did not significantly differ from that of
radiologists and orthopedic surgeons. However, PelviXNet sig-
nificantly outperformed one of the ER physicians and five resi-
dents. Especially on the more difficult pelvic fracture detection
task, PelviXNet’s accuracy score is higher than all ER physicians
and significantly better than residents, at least on par with radi-
ologists and even specialists as orthopedic surgeons. On average,
PelviXNet could detect 9%, 5.5%, and 9.7% of pelvic area frac-
tures that were misdiagnosed by ER physicians, consulting phy-
sicians, and ER residents, respectively. Residents can potentially
still benefit from the algorithm in the diagnosis of hip fractures, as
PelviXNet detected 3.3% of the misdiagnosed cases.

Discussion
A well-designed computer-aided diagnosis algorithm can reduce
the occurrence of medical errors and facilitate diagnosis23,24.
Currently, no algorithms provide a generalized and comprehen-
sive solution for reading pelvic radiography scans in the trauma
medicine domain. Although DL algorithms have previously
demonstrated the ability to classify and detect abnormalities
evident in radiographs, there is still a gap in the utilization of
these algorithms in the clinical environment. In this study, we
developed an algorithm based on a point-supervised DL method
that achieved high accuracy in identifying all kinds of trauma-
related radiographic findings on PXRs. PelviXNet achieved an
overall accuracy of 92.4% in a real-world population dataset.

Unlike the images of human extremities, PXRs reveal a more
complex anatomical structure and sometimes multiple injury
sites. Most of the previous studies on PXRs have focused only on
hip fractures17–20 or osteoarthritis15,25, which emphasize only a
specific region or condition in the entire image. It is not practical
to create different algorithms for each kind of abnormality that
appears in a single image. Thus, we need a universal solution for a
specific clinical scenario of emergency pelvic imaging examina-
tion. In our previous work22, we tried to deal with hip fractures

Table 1 Demographic data of development and test data set.

No. (%) of patients

Development
data set

Test data set

Variables (n= 5204) (n= 1888) p Value

Year of injury 2008–2016 2017
Age, median (IQR), y 60.00

[37.00, 78.00]
55.00
[30.75, 75.25]

<0.001

Gender, male 2752 (52.9) 908 (48.1) <0.001
Mechanism of injury <0.001
Motor vehicle accident 2193 (42.1) 893 (47.3)
Fall 2683 (51.6) 843 (44.7)
Mechanical injury 148 (2.8) 49 (2.6)
Other mechanisms 112 (2.2) 42 (2.2)
Unavailable 68 (1.3) 61 (3.2)
Extremity AIS≥ 3 2624 (50.4) 517 (27.4) <0.001
AIS≥ 16 1087 (20.9) 185 (9.8) <0.001
Acute trauma finding 3110 (59.8) 619 (32.8)
Hip fracture
Intracapsular 1014 (19.5) 184 (9.7) <0.001
Extracapsular 1059 (20.3) 207 (11.0) <0.001
Pelvic area fracture <0.001
LC type 576 (11.1) 97 (5.1)
APC type 60 (1.2) 7 (0.4)
VS type 25 (0.5) 3 (0.2)
Other 259 (5.0) 42 (2.2)
Hip dislocation 130 (2.5) 51 (2.7) 0.693
Femoral shaft fracture 62 (1.2) 30 (1.6) 0.234
Periprosthetic fracture 38 (0.7) 29 (1.5) 0.003

IQR interquatile range, AIS abbreviated injury scale, LC lateral compression, APC
anterior–posterior compression, VS vertical shearing.

Fig. 2 The receiver operating characteristic curve and precision-recall curve of the universal trauma finding detection algorithm. a The receiver
operating characteristic (ROC) curve of the performance of PelviXNet in the clinical scenario and the cross mark represents the performance on the
probability cutoff value. b The precision-recall (PR) curve of the performance of PelviXNet and the cross mark represents the performance on the
probability cutoff value. The 95% confidence intervals (CIs) of the ROC and PR curves were estimated using bootstrapping with 2000 replicates, which
was indicated as the purple area in the panels.
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and pelvic fractures simultaneously using an algorithm trained
with image-level labels. The algorithm PelviXNet developed in
this study can identify all kinds of trauma-related abnormalities
and localize them correctly due to the inclusion of point super-
vision for the regional information in the image. The ability to

identify multiple categories of abnormalities at multiple sites
concurrently in an image can increase a physician’s trust in the
algorithm and make it more feasible to use the algorithm widely
in clinical practice.

The bottleneck on developing DL models in the medical field is
relatively small image numbers and the lack of labeled data.
Weakly supervised methods may provide a sufficiently high
baseline performance on large but a little noisy data22. However,
some specific categories of medical images are difficult to acquire.
In this study, we also evaluated the impact of the adding point
annotated images on the model performance compared with a
weakly supervised method using image-level information only.
The model using 80% of point annotated images outperformed
the weakly supervised method using all images. The result indi-
cated adding detailed information to the model may reduce the
need for training images and achieving better results.

The distribution of the dataset largely affects the test perfor-
mance of the computer-aided diagnosis algorithm26. Although
some studies have demonstrated fair levels of accuracy with a
balanced dataset, the low incidence of positive findings in the
clinical scenario leads to a low PPV and a large number of false-
positive cases9,27,28. Inverse probability was also used to estimate

Fig. 3 The illustration of heatmap overlaid by the algorithm on original images. The red color represents a high probability of acute trauma finding
detected. The heatmap indicates a no fracture. b Anterior–posterior compression type pelvic fracture, c left femoral non-displaced intertrochanteric
fracture, d left periprosthetic fracture, e right femoral shaft fracture, and f right hip dislocation. g Difficult case of pelvic fracture. h Clinically missed pelvic
fracture. i Multiple pelvic fractures detected simultaneously by PelviXNet, respectively. All the pelvic fracture examples except case h in this figure require
angioembolization due to massive hemorrhage.

Table 2 Statistics of the algorithm missed and detected
trauma findings.

Algorithm missed
(false-negative rate)

Algorithm detected
(sensitivity)

Overalla 57 (9.2%) 562 (90.8%)
Hip fracture 22 (5.6%) 368 (94.4%)
Pelvic area fracture 23 (15.6%) 124 (84.4%)
Femoral shaft
fracture

5 (16.7%) 25 (83.3%)

Hip dislocation 4 (7.8%) 47 (92.2%)
Periprosthetic
fracture

5 (17.2%) 24 (82.8%)

aSome images presented with multiple categories of injuries, the overall is counted based on the
patient number.
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the algorithm behavior with the population distribution9. In our
study, we collected all PXR images taken in 2017 in the ER by
consecutive sampling. Although the overall number of positive
cases accounted for only 32.7% of the cases, considering for a
trauma center where relatively severe conditioned patients were
sent in, our algorithm still achieved a PPV of 86% while main-
taining a sensitivity of 90.8%.

Another consideration for DL algorithms is that they need to
have a performance comparable to that of physicians to yield
clinical benefits29. Previous studies have shown that algorithms

have a performance comparable to that of physicians in detecting
proximal humerus fractures30, wrist fractures23, and hip
fractures18,20 on radiographs. In our study, PelviXNet performed
similarly with consulting physicians, such as radiologists and
orthopedic surgeons. Some hip fractures and pelvic fractures that
ER physicians missed could be detected with PelviXNet using the
classification confidence scores and class activation heatmaps to
indicate and localize findings. This means that frontline physi-
cians can receive real-time recommendations from the algorithm
when they are treating multiple trauma patients, as misdiagnoses
can occur in a chaotic ER31. Regarding pelvic fractures, most
structurally and hemodynamically unstable pelvic fractures can
be detected by our algorithm, which is especially useful in insti-
tutes lacking consulting specialists or experienced medical staff32.

Trauma is time-sensitive, and early treatment relies on an
accurate and rapid diagnosis33. The task of detecting all kinds of
trauma-related findings on PXRs using an algorithm is one critical
component of an automation-assisted trauma diagnosis workflow.
Furthermore, computer-aided diagnosis systems can be applied in
institutes lacking specialists or can even be used in prehospital
settings34. Evidence shows that early treatment for hip and pelvic
fractures can reduce morbidity and mortality3–5,35–37. Rapid
diagnosis is the key to achieving early damage control and pro-
viding definite treatment. Collaboration between the algorithm
and physicians can improve the quality of trauma care.

Limitations. In addition to our algorithm achieving a physician-
level performance in detecting hip fractures, this is the first study
to create an algorithm that can detect pelvic fractures to the best
of our knowledge. Nevertheless, there were still some limitations
of this algorithm. The primary reason for the main limitation is
the paucity of the training data. The DL-based algorithm is a
data-driven method that relies on considerable data to solve
problems38. Insufficient training data, such as hip dislocation, will
decrease algorithm performance. Fortunately, the conditions
analyzed in this study are rarely missed by physicians39,40, so the
benefits of detecting these abnormalities are marginal compared
to diagnoses made with a computer-aided diagnosis algorithm.
Another limitation is that this was a retrospective image review
study limited to a single institute. The population and images
collected may be biased by this setting and might not directly
apply to other institutes with different population distributions.
In this study, we randomly selected those images based on the
clinical diagnosis before the whole analysis started. Therefore,
there is probably selective bias. Furthermore, we evaluated the
performance of physicians and the algorithm in terms of
detecting the main category of the disease of interest on images.
However, in real-world scenarios, physicians make diagnoses on

Table 3 The characteristics of the algorithm identified and
missed trauma findings regarding hip fracture and pelvic
fracture.

No. (%) of patients with hip fracture

Algorithm missed Algorithm
identified

Variables (n= 22) (n= 368) p Value

Age, median
(IQR), y

71.00
[51.50, 78.50]

79.00
[67.00, 87.00]

0.018

Gender, male 10 (45.5) 140 (38.0) 0.505
Mechanism of injury 0.389
Motor vehicle
accident

7 (31.8) 61 (16.6)

Fall 15 (68.2) 295 (80.2)
Mechanical injury 0 (0.0) 7 (1.9)
Other mechanisms 0 (0.0) 2 (0.5)
Unavailable 0 (0.0) 3 (0.8)
Hip fracture
Intracapsular 16 (72.7) 168 (45.7) 0.016
Extracapsular 6 (27.3) 201 (54.6) 0.015
Misdiagnosed 2 (9.1) 1 (0.3) 0.001

Difficult case 18 (81.8) 34 (9.2) <0.001

No. (%) of patients with pelvic area
fracture

Algorithm missed Algorithm
identified

(n= 23) (n= 124) p Value

Age, median
(IQR), y

58.00
[30.50, 77.50]

45.00
[25.00, 66.00]

0.11

Gender, male 7 (30.4) 60 (48.4) 0.171
Mechanism of injury 0.238
Motor vehicle
accident

13 (56.5) 87 (70.2)

Fall 8 (34.8) 26 (21.0)
Mechanical injury 1 (4.3) 5 (4.0)
Other mechanisms 0 (0.0) 5 (4.0)
Unavailable 1 (4.3) 1 (0.8)
Hemodynamic
unstable

1 (4.3) 5 (4.0) 1

Transarterial
embolization

1 (4.3) 16 (12.9) 0.475

Extremity AIS≥ 3 6 (26.1) 53 (42.7) 0.167
AIS≥ 16 4 (17.4) 39 (31.5) 0.217
Pelvic area fracture 0.804
LC type 13 (56.5) 83 (66.9)
APC type 1 (4.3) 6 (4.8)
VS type 0 (0.0) 3 (2.4)
Other 9 (39.1) 32 (25.8)
Structural unstable 4 (17.4) 30 (24.2) 0.597
Misdiagnosed 3 (13.0) 3 (2.4) 0.073
Difficult case 12 (52.2) 10 (8.1) <0.001

IQR interquartile range, AIS abbreviated injury scale, LC lateral compression, APC
anterior–posterior compression, VS vertical shearing.

Table 4 The comparison of models trained using different
numbers of physician annotated images. The weakly
supervised method uses only image-level annotations
automatically produced from clinical diagnosis.

Annotated images AUROC AUPRC

Supervised N= 1040 (20%) 0.933 0.921
N= 2081 (40%) 0.959 0.949
N= 3122 (60%) 0.961 0.952
N= 4163 (80%) 0.969 0.963
N= 5204 (100%) 0.973 0.963

Weakly
supervised

Image-level only 0.967 0.957

AUROC area under the receiver operating characteristic curve, AUPRC area under the precision-
recall curve.
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the basis of not only radiographic findings but also clinical
information, such as patient histories and physical examination
findings. The actual benefit of this algorithm should be evaluated
in a prospective randomized setting in a clinical environment.

This study demonstrated that a universal trauma-related
detection algorithm for PXRs can be trained scalably using
point-based weakly supervised annotations and achieve a suitable
performance both in a clinical scenario distribution dataset and
balanced dataset. This is the first algorithm to detect pelvic and
hip fractures concurrently, which can prevent the misdiagnosis of
these injuries in a clinical setting. Future prospective studies are
required to validate whether applying PelviXNet as a computer-
aided diagnostic system in a clinical environment leads to more
precise diagnoses and facilitates trauma patient management.

Methods
Data sources. The development dataset was established by retrospectively
reviewing the data in the trauma registry of the Chang Gung Memorial Hospital in
Taiwan recorded from May 2008 to December 2016. The demographic and
trauma-related data, including age, sex, date of injury, mechanism of injury, vital
signs upon arrival, final diagnosis, abbreviated injury scale score, injury severity
score, and outcomes, were recorded. The first pelvic anteroposterior radiograph
taken after the patient’s arrival was acquired from the picture archiving and
communication system repository. The images were deidentified and converted to
portable network graphics format for further processing. An image review board
consisting of a radiologist, a trauma surgeon, and an orthopedic surgeon who had
15 years, seven years, and three years of experience, respectively, was responsible
for identifying the trauma-related findings. The best available information was
provided, including the original images, radiologist reports, clinical diagnoses,
surgical reports, and advanced imaging modality findings, if available. The
reviewers were asked to annotate the images by marking the center of the trauma-
related radiographic findings, such as hip fractures, pelvic area fractures, hip dis-
locations, periprosthetic fractures, and femoral shaft fractures. Pelvic ring fractures,
acetabular fractures, sacrum fractures, and ilium fractures were all defined as pelvic
area fractures. Multiple marks were made if more than one abnormal site was
identified. The three reviewers labeled the images separately. When the

inconsistency happens, one of the reviewers will review the clinical information
and additional image exams of the patient. He will also discuss with the other two
labels to make a final decision of the label.

To evaluate the algorithm performance with distribution data from a real-world
population, an independent clinical scenario test set was retrieved from the ER
registry data recorded from January 2017 to December 2017 and named the
PXR2017 test set. All images acquired in the ER as indicated by trauma were
collected. The test dataset did not overlap with the development dataset. The
clinical information retrieved and the manner in which the images were annotated
were the same as those used for the development dataset. Additionally, difficult
cases were assessed by the review board if the finding was controversial on the
initial PXR image or considered visually insignificant. Misdiagnosed cases were also
identified when the review board considered positive findings to be evident on the
image, but no medical records documented the disease. This study was approved by
the Institutional Review Board of Chang Gung Memorial hospital, with the
identification number CGMHIRB 201702059B0. The consent of data collection was
waived by the IRB. All of the participating physicians were well-informed about the
design of the study and algorithm, and the written consents were collected.

Algorithm design. PelviXNet was designed with a combination of DenseNets,
point supervision, and FPNs (illustrated in Fig. 4). In brief, only the development
dataset was used to develop the algorithm. The images were resized to 1024 × 1024
pixels as inputs in the DL algorithm. The output is a 32 × 32 binary classification
probability heatmap, demonstrating the possibility of trauma-related radiographic
findings. The heatmap could further be overlaid on the original image to visualize
the results produced by the algorithm. A point-based supervision technique was
used to extract the local information from positive image regions during the
training process. The image-level prediction was generated on the basis of the
maximum value of the heatmap. After the training images were repeatedly inputted
into the algorithm, it adjusted the calculated weight inside the network, and the
performance converged, demonstrating that the algorithm had the learning ability
to universally detect trauma-related radiographic findings. During the inference
stage, five models with five augmented images each were ensembled to generate the
final prediction of the image (Fig. 5).

Image preprocessing. In a preprocessing step, all PXRs were padded to square
shapes using zeros and resized to 1024 × 1024. The preprocessing step standardizes
the input size for CNNs and optimizes the graphics processing unit (GPU) memory
footprint. A previous study demonstrated that appropriate data augmentation can

Table 5 The comparison of performance between physicians and the algorithm regarding hip fracture and pelvic fracture.

Hip fracture Pelvic fracture

Acc. Sen. Spe. Misdiagnosis detected Acc. Sen. Spe. Misdiagnosis detected

Our algorithm 0.995 1.00 0.99 0.945 0.92 0.97
ER physician 1a 0.915 0.94 0.89 0 (0%) 0.925 0.90 0.95 2 (4%)
ER physician 2 0.955 0.98 0.93 1 (2%) 0.865 0.78 0.95 8 (16%)
ER physician 3 0.970 1.00 0.94 0 (0%) 0.915 0.86 0.97 4 (8%)
ER physician 4 0.960 0.98 0.94 0 (0%) 0.905 0.86 0.95 4 (8%)
Mean 0.950 0.975 0.925 0.25 (0.5%) 0.903 0.850 0.955 4.5 (9.0%)
Radiologist 1 0.985 1.00 0.97 0 (0%) 0.940 0.88 1.00 3 (6%)
Radiologist 2 0.970 0.98 0.96 1 (2%) 0.925 0.86 0.99 4 (8%)
Orthopedics 1 0.960 1.00 0.92 0 (0%) 0.970 0.94 1.00 0 (0%)
Orthopedics 2 0.980 1.00 0.96 0 (0%) 0.925 0.86 0.99 4 (8%)
Mean 0.974 0.995 0.953 0.25 (0.5%) 0.940 0.885 0.995 2.75 (5.5%)
Resident 1a 0.955 0.98 0.93 0 (0%) 0.800 0.62 0.98 16 (32%)
Resident 2 0.970 1.00 0.94 0 (0%) 0.880 0.86 0.90 4 (8%)
Resident 3 0.995 1.00 0.99 0 (0%) 0.920 0.86 0.98 4 (8%)
Resident 4a 0.890 0.94 0.84 1 (2%) 0.810 0.68 0.94 13 (26%)
Resident 5 0.980 0.96 1.00 2 (4%) 0.910 0.86 0.96 4 (8%)
Resident 6a 0.930 0.94 0.92 0 (0%) 0.825 0.90 0.75 2 (4%)
Resident 7 0.930 0.92 0.94 3 (6%) 0.935 0.92 0.95 1 (2%)
Resident 8 0.940 0.92 0.96 1 (2%) 0.880 0.86 0.90 4 (8%)
Resident 9a 0.945 1.00 0.89 0 (0%) 0.920 0.90 0.94 2 (4%)
Resident 10 0.965 0.96 0.97 1 (2%) 0.910 0.86 0.96 5 (10%)
Resident 11 0.935 0.90 0.97 5 (10%) 0.940 0.90 0.98 2 (4%)
Resident 12a 0.885 0.78 0.99 10 (20%) 0.875 0.78 0.97 8 (16%)
Resident 13 0.975 1.00 0.95 0 (0%) 0.945 0.90 0.99 2 (4%)
Resident 14 0.990 1.00 0.98 0 (0%) 0.950 0.92 0.98 1 (2%)
Mean 0.949 0.950 0.948 1.64 (3.3%) 0.893 0.844 0.941 4.86 (9.7%)

aSignificant difference between a physician and the algorithm on McNemar’s test. Abbreviations: Acc accuracy, Sen sensitivity, Spe specificity.
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effectively improve the model’s generalization ability and robustness in unseen
domains41. During training, we further augmented the preprocessed PXR with the
following operations: (1) random horizontal and vertical translations with the
offset within [−100, 100] pixels in both directions; (2) random rescaling with a
ratio within [0.9, 1.1]; (3) random horizontal flipping; (4) random rotation with a
rotation within [−15°, 15°]; and (5) brightness and contrast jittering with a
magnitude ratio within [0.75, 1.25].

Point-base annotation. Object detection techniques have been extensively studied
by the computer vision society in recent decades. The most common form of
annotation is the bounding box, which is placed on each instance of the target
object42–44. However, the nature of pelvic fractures is inherently different from that
of objects in regular object detection tasks (vehicle, animal, tree, etc.). Due to the
complex morphology of pelvic fractures, it is often difficult to define the border,
extent, and number of bounding boxes. In addition, bounding box annotation is
labor-intensive, making it less economically preferable in large-scale medical image
annotation. To bridge this gap, in this study, we proposed a DL detection algorithm
trained using point-based annotation, an efficient yet informative labeling method
to provide findings’ localization information conveniently. The pin-pointing
annotation rule is flexible and naturally fits for complex scenarios: we asked the
annotators/physicians to place points on visible fracture sites. For complex sce-
narios where the instance of fractures cannot be clearly defined, the annotators
decided to place one or multiple points at their own discretion. The training
mechanism of PelviXNet was designed to accept the thus formed point-based
annotations by effectively handling annotation variations caused by ambiguous or
challenging scenarios.

To produce the supervision signals for training the CNN from point-based
annotations, the points were converted to make the image masks of size 1024 ×
1024 per X-ray image, with areas indicating the locations of fracture sites. For each

PXR, the mask was generated with “ones” for pixels within an empirically selected
radius of s= 75 pixels from any annotation points (i.e., each annotation point was
represented by a disk in the mask) and “zeros” elsewhere. Since the exact scale and
shape of the pelvic radiographic findings are unknown solely based on the
annotation point, the generated masks provided noisy yet informative pixel-level
supervision signals for training the CNN detector. Previous studies have
demonstrated that DL is robust to label noises45.

Training the DL model. Due to the intrinsically different types and natures of
pelvic radiographic findings (pelvic ring fractures, acetabular fractures, sacrum
fractures, ilium fractures, etc.), their radiographic patterns can vary considerably in
scale. To model the radiographic patterns on different scales, we employed
DenseNet-169 a feature pyramid network (FPN)44 as the backbone feedforward
neural network (illustrated in Fig. 4). FPNs have been widely adopted in object
detection techniques for natural images to cope with the size differences of objects
caused by image resolution and perspective effects43. The FPN outputs multiple
levels of feature maps with different spatial resolutions, which can be used to
capture objects of different sizes. In anchor-based object detection methods, object
annotations were assigned to different pyramid levels according to their size
measured by the bounding box. For fracture detection on PXR with point-based
annotation, the size of the fracture was inherently ambiguous (because of both
perspectives of the complexity of the fractures and the form of annotation).
Therefore, we assigned every fracture annotation point to all pyramid levels in the
FPN to encourage the network to recognize the fractures at different spatial
resolutions.

From PelviXNet, the backbone DenseNet-169 has a bottom-up path that
encoded the input PXR using four sequential blocks, each downsampling the image
size by 2. The FPN added a top-down path that upsamples and fused the feature
maps produced in the bottom-up path, resulting in four feature maps {F1, F2, F3,

Fig. 4 The illustration of bone fracture classification and localization system. The proposed bone fracture classification and localization system trained
with point-based supervision signals. The network uses PXR images as input and extracts different levels of feature abstractions through a bottom-up
pathway, which is further fused by a top-down path.

Fig. 5 The Overviw of the ensemble method for inference in testing. During the inference stage, once the image was input, five models with five
augmented images each were ensembled to generate the final prediction of the image.
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F4} with spatial resolutions of 32 × 32, 64 × 64, 128 × 128, and 256 × 256,
respectively. The feature maps were then processed by a 1 × 1 convolution to
produce dense saliency maps of positive radiographic findings, denoted as {P1, P2,
P3, P4}. During training, saliency maps at all four levels were compared with the
supervision masks to calculate training loss. Specifically, the supervision mask was
downsampled to the spatial resolution of {P1, P2, P3, P4}, denoted as {M1, M2, M3,
M4}. The neural network was trained using binary cross-entropy (BCE) loss
calculated pixel-wise on the four saliency maps and supervision masks:

L ¼
X

k

1
Ωk

X

i;j

� Mk i; jð Þ � log σ Pk i; jð Þð Þ þ 1�Mk i; jð Þð Þ � log σ 1� Pk i; jð Þð Þ½ �:¼

ð1Þ
where (i, j) denotes the index of the pixel, k denotes the index of the output saliency
map, Ωi denotes the number of pixels in the output, and σ(·) denotes the sigmoid
activation function. During inference, only the saliency map P4 is produced as an
output.

We performed fivefold cross-validation in training and model ensembling
inference in testing. Under fivefold cross-validation, the development set was
randomly and evenly split into fivefold per each iteration, fourfold were selected for
training and the rest for validation sets. PelviXNet was trained on each training set
and validated using the corresponding validation set.

Implementation details. DL models were developed on a workstation with a single
Intel Xeon E5-2650 v4 CPU @ 2.2 GHz, 128 GB RAM, 4 NVIDIA TITAN V GPUs.
The operating system was Ubuntu 18.04 LTS. All code used in this study was
written in Python v3.6, and DL models were implemented by using PyTorch v1.3.
Image preprocessing was performed using the Python Imaging Library (Python
Imaging Library). We used ImageNet pretrained weights to initialize the backbone
network DenseNet-16946. The Adam optimizer47 was used to train the model for
100 epochs with a batch size of 8 and a starting learning rate of 1e−5. The trained
model was evaluated on the validation set after every training epoch, and the one
with the highest validation AUROC was selected as the best model.

Inference with ensemble learning. Previous studies have demonstrated that the
generalization ability of an ensemble of multiple learners can be significantly better
than that of single learners48,49. In this work, by conducting fivefold cross-vali-
dation, the five best models were selected based on their validation AUROCs and
could be considered weak learners under the ensemble learning setup. In this work,
we adopt a bagging strategy50 to combine weak learners into an ensemble model to
reduce the variance of weak learners. Figure 5 shows our ensemble learning system
at the inference time. For each weak learner, the input PXR was preprocessed to
1024 × 1024 and augmented five times using predefined magnitude combinations
of horizontal flipping, rotation, and contrast. The model inference was then per-
formed individually on the five augmented PXRs. This step aimed to produce
inference results of the input PXR under different appearance perturbations, which
offer diversified results that can increase the robustness of ensemble learning. With
the five best models each inferred from five augmentations, in total, 25 saliency
maps were produced, denoted as Pn. The final image-level probability was calcu-
lated by an ensemble of the average of Pn, written as:

p ¼ 1
25

X25

n¼1

max
i;j

σ Pn i; jð Þð Þ; ¼ ð2Þ

The final localization map for radiographic findings was produced by the
ensemble of the 25 saliency maps. Specifically, an inverse transform of the
augmentation was applied for each saliency map to spatially align them with the
original input PXR. Then, a pixel-wise average of the saliency maps was calculated
to produce the final output.

Independent clinical scenario test evaluation. After the algorithm was developed, it
was applied to the PXR2017 dataset to evaluate its universal trauma-related per-
formance in detecting radiographic findings in the patient data from a real-world
clinical population. The cutoff probability of trauma-related findings being present
was defined by the review board to balance sensitivity and specificity for the clinical
application. The ROC curve and PR curve were calculated. The sensitivity, speci-
ficity, PPV, and NPV at the cutoff value were evaluated.

Comparison with physician performance. In the ER, the most important and
frequent clinical application of PXRs is to detect hip fractures and pelvic area
fractures. From the PXR2017 dataset, we randomly selected 50 hip fracture images,
50 pelvic area fracture images, and 50 normal images and included them in the
PXR150 test set51 to compare the diagnostic performances of the algorithm and
physicians. We recruited four ER physicians, two radiologists, two orthopedic
surgeons, and 14 residents who worked in the ER and evaluated their diagnostic
performances. The participants were asked to perform a web-based test to classify
the type of fractures that were presented in a randomly ordered PXR150 test set.
PelviXNet52 was also applied to this dataset. The prediction heatmap was reviewed
to confirm the classifications of the fractures. The results of the physicians were
compared with those of PelviXNet. The acute trauma-related findings that

PelviXNet detected but that the physicians missed were considered potential
misdiagnosis cases that could have been prevented.

Statistical analysis. All statistical analyses were carried out using R 3.6.3 with the
packages “pROC”, “tableone”, “caret”, and “ggplot2”. The continuous variables
were analyzed with the Kruskal–Wallis rank-sum test, and the categorical variables
were compared with the chi-square test and Fisher’s exact test. The AUROC and
AUPRC were calculated. The 95% CIs of the ROC and PR curves were estimated
using bootstrapping with 2000 replicates. Youden’s J statistic was used to determine
the performance of a given cutoff value. The performance of PelviXNet and the
physicians with the PXR 150 test set was compared with McNemar’s test. The
balanced accuracy and class-specific sensitivity and specificity were demonstrated
for the three-class classification problem in the PXR150 test. A p < 0.05 indicated
statistical significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The imaging data are not publicly available due to the restricted permissions of the
current study and the policy of the institute. The test imaging dataset for evaluates the
performance was available on https://doi.org/10.34747/f06m-m978 for data validation
use and academic purpose only.

Code availability
The code used to evaluate the model performance is publicly available on https://doi.org/
10.34747/3haq-pv57. Usage of this code is for academic purposes only and the operation
packages were accessed upon request.
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