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ABSTRACT
Classification is one of the core problems in Computer-Aided
Diagnosis (CAD), targeting for early cancer detection using
3D medical imaging interpretation. High detection sensitiv-
ity with desirably low false positive (FP) rate is critical for
a CAD system to be accepted as a valuable or even indis-
pensable tool in radiologists’ workflow. Given various spu-
rious imagery noises which cause observation uncertainties,
this remains a very challenging task. In this paper, we pro-
pose a novel, two-tiered coarse-to-fine (CTF) classification
cascade framework to tackle this problem. We first obtain
classification-critical data samples (e.g., samples on the deci-
sion boundary) extracted from the holistic data distributions
using a robust parametric model (e.g., [35]); then we build
a graph-embedding based nonparametric classifier on sam-
pled data, which can more accurately preserve or formulate
the complex classification boundary. These two steps can
also be considered as effective “sample pruning”and“feature
pursuing + kNN/template matching”, respectively. Our ap-
proach is validated comprehensively in colorectal polyp de-
tection and lung nodule detection CAD systems, as the top
two deadly cancers, using hospital scale, multi-site clinical
datasets. The results show that our method achieves over-
all better classification/detection performance than exist-
ing state-of-the-art algorithms using single-layer classifiers,
such as the support vector machine variants [45], boosting
[40], logistic regression [33], relevance vector machine [35],
k-nearest neighbor [30] and sparse projections on graph [6].

Categories and Subject Descriptors
Industrial and Application Paper [Knowledge Manage-
ment (KM)]: Classification and Clustering, Data pre- and
post-Processing, Large-scale statistical techniques
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bor voting, template matching

1. INTRODUCTION
Colon cancer and lung cancer are the top two leading

causes of cancer deaths in western population. Meanwhile,
these two cancers are also highly preventable or “curable”
if detected early. Image interpretation based cancer detec-
tion via 3D computer tomography has emerged as a common
clinical practice, and many computer-aided detection tools
for enhancing radiologists’ diagnostic performance and ef-
fectiveness are developed in the last decade [16, 30, 33, 40,
45]. The key for radiologists to accept the clinical usage of a
computer-aided diagnosis (CAD) system is the high detec-
tion sensitivity with reasonably low false positive (FP) rate
per case.

CAD system generally contains two stages: Image Pro-
cessing as extracting sub-volumes of interest (VOI) by heuris-
tic volume parsing, and informative feature attributes de-
scribing the underlying (cancerous) anatomic structures; Clas-
sification as deciding the class assignment (cancer, or non-
cancer) for selected VOIs by analyzing features. VOI se-
lection is also called candidate generation, or CG, to rapidly
identify possibly anomalous regions with high sensitivity but
low specificity, e.g., > 100 candidates per scan with 1 ∼ 2
true positives. Then dozens or hundreds of heterogeneous
image features can be computed per VOI, in domains of vol-
umetric shape, intensity, gradient, texture and even context
[16, 30, 33, 40, 45]. Last, the essential goal for classification
is to achieve the best ROC (Receiver Operating Character-
istic) or FROC (Free-Response Receiver Operating Charac-
teristic) analysis on testing dataset, to balance the criteria
of sensitivity and specificity, given VOIs and associated fea-
tures.

This paper mainly focuses on the classification aspect of
CAD. We propose and comprehensively evaluate a novel
coarse-to-fine classification framework. The method consists
of the following two steps, in both training and testing. (1)
Sample Pruning: Parametric classification models (e.g., lo-
gistic regression [33], boosting [40], support/relevance vector
machines [3, 35]) are trained on the complexly distributed
datasets as coarse, distribution-level classification. The goal
is not to assign class labels, but to prune data samples to
select more “classification-critical” candidates, which are ex-
pected to preserve the decision boundary in the high di-
mensional feature space (thus vast numbers of samples lying
far from classification boundary are discarded 1). (2) Fea-
ture Pursuing + kNN/Template Matching: We first apply

1This is related with using nearest neighbor analysis to



feature selection and graph embedding methods jointly to
find intrinsic lower dimensional feature subspace that pre-
serves group-wise data topology, and then employ nonpara-
metric classifiers for final classification, using kNN or tem-
plate matching. We argue that more precisely modeling the
intrinsic geometric of decision boundary, by graph embed-
ding and nonparametric classifiers in a finer level, can po-
tentially improve the final classification performance. The
overall process is illustrated as follows

Samples → Sample pruning → Feature selection

→ Class regularized graph embedding

→ kNN/Template matching

We applied the proposed framework on colon polyp and
lung nodule detection, using two large scale clinical datasets
collected from multiple clinical sites across continents. Clas-
sification in these two CAD problems is very important, but
also challenging due to the large within-class variations (for
polyps/nodules in different morphological subcategories, spa-
tial contexts and false positives resulted from various anatomic
structures, such as tagged stool, ileo-cecal valve, extra-colonic
finding and rectal catheter or balloon for colon polyp detec-
tion, and pathology, vessel, vessel junction, fissure, scar tis-
sue and so on for lung nodule detection). The low-level im-
agery data were extracted and presented as the intermediate-
level heterogeneous natured features for the classification
task (as special cases of image based object recognition).
The results show that the proposed framework significantly
outperformed the baseline CAD system using the same set
of input image features, and compared favorably with other
state-of-the-arts.

The rest of the paper is organized as follows. In Section
2 we present (data) sample pruning using a linear paramet-
ric model of Relevance Vector Machine Multiple Instance
Learning (RVMMIL) [35]. Section 3 describes the Maxi-
mum Relevance Minimum Redundancy (MRMR) based fea-
ture selection and our modified graph embedding method for
stratified optimization of dimension reduction and manifold
projection. The strategy of integrating sparsity into graph
embedding is also addressed and compared in section 3. This
is followed by k nearest neighbor (kNN) voting and t-center
[44] based template matching techniques for classification in
Section 4. Then we perform extensive experimental evalua-
tion using our coarse-to-fine classification diagram on both
colon polyp and lung nodule classification applications in
Section 5. Finally we conclude the paper in Section 6 with
discussion.

2. SAMPLE PRUNING USING PARAMET-
RIC RVMMIL

find data samples either near the decision boundary [41]
or in local neighborhoods [48], then training SVM classi-
fiers on reduced or clustered datasets. However we perform
sample pruning by selecting data upon their classification
scores/confidences of a learned parametric model that is
well studied, more robust and stable, compared with nearest
neighbor (NN) clustering method, especially in high dimen-
sional space. For example, the neighborhood size selection
and defining sensible distance measure problems in NN are
non-trivial.

We start by developing a “coarse” classifier for sample
pruning using a parametric model. Considering the specific
characteristics of CAD classification problems, in this paper
we use the RVMMIL approach [35].

Relevance vector machine (RVM) is a supervised Bayesian
machine learning approach that estimates the classifier pa-
rameters by maximizing the likelihood in a probabilistic set-
ting. A powerful variation/extension has been proposed [35]
to integrate feature selection and handle multiple instance
learning (MIL) problems which is essential for CAD applica-
tions. The output of RVMMIL is a linear logistic regression
model on a reduced set of features, and gives a class predic-
tion with probability or confidence for any single instance.

In RVMMIL, the probability for an instance xi to be pos-
itive is p(y = 1|xi) = σ(a′xi), where σ is the logistic func-
tion defined as σ(t) = 1/(1 + e−t) and a′xi is the linear
dot-product between data feature vector xi and model coef-
ficient vector a. Therefore, the probability for a bag or set
X = {xi} to be positive is p(y = 1|x) = 1−∏

xi∈X (1−p(y =

1|xi)). Given the training dataset T = (X ,y), X is the
set of training bags of multiple instances with label y. The
RVMMIL utilizes the maximum a-posterior (MAP) estimate
based on T to find the optimal parameter a such that

a = arg max
ã

p(ã|T ) = arg max
ã

p(T |ã)p(ã)

= arg max
ã

∑
i

yi log pi + (1− yi) log(1− pi) + log p(ã),

(1)

where pi = p(yi = 1|xi, ã) and p(ã) is the prior which can be
assumed to be Gaussian. In this case, (1) can be easily solved
using Newton-Raphson method [35]. For more details, we
refer the readers to [35].

In our coarse-to-fine classification model, RVMMIL is used
as the coarse-level cascade classifier for sample pruning, i.e.,
we will remove samples xi satisfying p(y = 1|xi) < ρ̂. This
step can eliminate massive amount of negatives without ef-
fecting much on sensitivity, by choosing a balanced ρ̂. The
remained data samples p(y = 1|xi) ≥ ρ̂ are either true pos-
itives (at high recall) or “hard” false positives, lying close
to the classification boundary, which largely impact the fi-
nal classification accuracy. Note that other classifiers with
confidence estimates, as boosting [40] and regularized SVM
[45], are also applicable.

3. FEATURE PURSUIT VIA SELECTION &
GRAPH EMBEDDING

The basic idea of feature pursuit is to estimate intrin-
sic, lower dimensional feature subspace of data for nonpara-
metric classification, while preserving generative data-graph
topology. This is the key to achieve superior classification
performance with simple nonparametric classifiers. In the
proposed framework it consists of two steps: supervised fea-
ture selection and class regularized graph embedding.

3.1 Feature Selection
Feature selection, also as known as variable selection, is

a machine learning scheme to search and extract a subset
of relevant features so that a desirable objective of model
complexity/effectiveness can be optimized. It essentially has
exponential combinatorial complexity in feature cardinality,
if doing exhaustive search. By applying feature selection,



only a compact subset of highly relevant features is retained,
to simplify the later graph embedding or feature projection
process and make it more effective. There are many feature
selection techniques in the literature [4, 5, 8, 19, 21, 25, 46,
49]. In this work, we use Maximum Relevance Minimum
Redundancy (MRMR) feature selection [31], which can give
a very good representative feature set with a fixed number
of selected features, or the least amount of relevant features
to achieve the same accuracy level (as original feature set).
Moreover, MRMR is very efficient in computation and stor-
age.

The relevance in MRMR is measured using a variant of
Pearson coefficient [37]. For any two variables f and f̃ , the
Pearson coefficient γ between them is

γ(f, f̃) =
|Cov(f, f̃)|√
Var(f)Var(f̃)

,

where Cov(f, f̃) = E[(f −E[f ])(f̃ −E[f̃ ])],

(2)

E[· ] is the expectation and Var(· ) represents the variance.
Given a set of features F = {fi}, its MRMR feature subset
H maximizes the following objective κ:

κ(H,y) = γ(H,y)− γ(H), (3)

where

γ(H) =
1

m2

∑

fi,fj∈H
γ(fi, fj), (4)

γ(H,y) =
1

m

∑

fi∈H
γ(fi,y), (5)

and m is the total number of elements in H. Starting from
H0 = ∅, we select fi by

fi = arg max
f∈F−Hi−1

γ(f,y)− 1

i− 1

∑

fj∈Hi−1

γ(f, fj) (6)

Then set Hi = Hi−1∪fi. This is repeated until κ(Hi−1,y) ≥
κ(Hi,y). where Hi−1 reaches optimum. Using this method,
we select 18 out of 96 features for the colon dataset, and
23 out of 120 features for the lung nodule dataset. The
objective plots are shown in Fig. 1.

3.2 Class Regularized Graph Embedding
Nonparametric classifiers, such as nearest neighbor (NN)

or (t-center [44]) template matching (TM), are flexible and
powerful representations for joint classification, clustering
and retrieval. However they are very sensitive to high di-
mensional feature space. In this section, we exploit Class
Regularized Graph Embedding (CRGE) to project data (after
feature selection) into an even lower dimensional subspace,
where data samples from the same class getting closer and
samples from different classes moving apart, to make NN or
TM more robust and semantically interpretable, as shown
later.

Graph embedding is a special class of dimension reduc-
tion method that uses linear or nonlinear projections. Fea-
ture projections can be learned in different ways: mini-
mizing the reconstruction error as in principal component
analysis (PCA) [12, 23]; preserving distances in the orig-
inal space, e.g. multidimensional scaling (MDS) [11] and
ISOMAP [43]; maximizing class-data separation as linear
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Figure 1: The number of selected features versus
the MRMR feature selection criterion in Eq. (3) on
colon polyp (a) and lung nodule (b) datasets.

discriminant analysis (LDA) [12], or retaining the linear re-
lationship between local neighbors, e.g., neighborhood com-
ponent analysis (NCA) [18], locally linear embedding (LLE)
[38]. We follow the principle that keeps the locality of nearby
data and maps apart data further, in the graph-induced sub-
space, which is similar to Laplacian Eigenmap [2, 7] and
Locality Preserving Projection [22].

Given a set of N points X = {x1,x2, · · · ,xN} ⊂ Rn,
and a symmetric N ×N matrix W which measures the sim-
ilarity between all pairs of points in X . The set X and
matrix W compose a graph G, with X as vertices and W
as weights of the edges. The conventional graph embed-
ding method will map X to a much lower dimensional space
Y = {y1,y2, · · · ,yN} ⊂ Rñ, ñ ¿ n. The optimal Y should
minimize the loss function L(Y) which is defined as

L(Y) =
∑
i,j

‖yi − yj‖2Wij , (7)

under some appropriate constraints. This objective function
ensures yi and yj to be close if xi and xj are close and Wij
is large. Though performed well in many applications [7,
22], the limitation of Eq. (7) is that it does not penalize the
similarity between points belonging to different classes. One
more comprehensive strategy is to simultaneously maximize
the similarity between data pairs of the same class and mini-
mize the similarity between two points rooted from different



classes. In other words, we optimize on mapping the same
class data to proximity subspaces, while projecting different
class data samples to be far apart, explicitly.

The goal of class regularized graph embedding is to find
a mapping φ : X 7→ Y, such that φ minimizes the function
E(Y) defined as

E(Y) =
∑

i,j∈S
‖yi − yj‖2Wij −

∑
i,j∈D

‖yi − yj‖2Wij ,

subject to: ‖Y‖F = 1.

(8)

where i, j ∈ S means xi and xj belong to the same class,
and i, j ∈ D means xi and xj are in different classes. ‖· ‖F

is the Frobenius norm. To avoid notation clutter, we rewrite
(8) and get

min
∑
i,j

‖yi − yj‖2WijHij , (9)

where Hij is the Heaviside function and

Hij =

{
1, if i, j ∈ S

−1, if i, j ∈ D .

Various choices of the mapping function φ have been pro-
posed recently, e.g. linear mapping, kernel mapping and
tensor mapping [47]. We use linear mapping because of its
simplicity and generality [8]. A linear mapping function φ
is described as

y = φ(x) = M ′x, M ∈ Rn×ñ , ñ ¿ n . (10)

Plugging (10) into (9), we get

min
M

∑
i,j

‖M ′xi −M ′xj‖2WijHij ,

subject to: ‖M‖F = 1 ,

(11)

where the constraint ‖M‖F = 1 eliminates the scaling ef-
fect. Eq. (11) can be solved very quickly using gradient
descent technique along with iterative projections [36]. The
reduced dimension ñ is determined when the loss function
(8) is minimized by varying ñ. Though some other ways are
possible.

The computation of W can be done in the following man-
ners, which correspond to different dimension reduction meth-
ods as LLE [38], ISOMAP [43], and Laplacian Eigenmap [2,
7].

W (i, j) =

{
1, if i, j ∈ S
0, if i, j ∈ D ; (12)

W (i, j) = exp{−α‖xi − xj‖2} , α > 0 ; (13)

W (i, j) = exp{−α(xi − xj)
′A(xi − xj)} ,

α > 0, A is a PSD matrix ; (14)

W (i, j) = x′ixj/‖xi‖‖xj‖ . (15)

Eq. (12) is the simplest weighting scheme, where W (i, j) = 1
if and only if xi and xj belong to the same class. However
this scheme might lose information about the affinity be-
tween the nodes belonging to different classes. Eq. (13)
is the heat kernel weighting method, which has an intrin-
sic connection to the Laplace Beltrami operator on differen-
tiable functions on a manifold [1]. Eq. (14) is related to the
Mahalanobis distance between two vectors. Eq. (15) is the
dot product weighting scheme, which measures the cosine
similarity of the two vectors and is easy to compute. For

our CAD purpose of cancer lesion classification, Eq. (12)
neglects the similarity between negative and positive sam-
ples, which invalidates the penalization about the similarity
between samples from different classes; Eq. (13) and (14)
are not suitable because they both use Euclidean or Maha-
lanobis similar distance assumption, which holds when the
data samples lie in a (locally) Euclidean space. From our
empirical observation, this assumption does not apply to
colon polyp or lung nodule dataset. Furthermore, Eq. (13)
and (14) bother to tune the parameters α or A which may
be sensitive for the similarity calculation. Thus we use (15)
for its appropriateness and computation efficiency.

The effectiveness of dimension reduction can be evalu-
ated according to several criteria, e.g., information gain [10],
Pearson coefficients [37] and Fisher score [14]. We validate
the effectiveness of our proposed dimension reduction tech-
nique using Fisher Score (FS) [14] on both polyp colon and
lung nodule datasets. The class separability between nega-
tives and positives is measured via Fisher’s linear discrimi-
nant [14]. Let the covariance matrices of the negatives and
positives be Σ− and Σ+, and the means of the negatives and
positives be µ− and µ+, then the Fisher linear discriminant
of the binary classes is

s = (µ+ − µ−)′(Σ+ + Σ−)−1(µ+ − µ−) , (16)

where the larger s is, the more statistically distinguishable
negative-positive class distributions will be. CRGE is capa-
ble to increase the discriminant between positive and nega-
tive lesions in the projected feature subspaces, visually and
numerically. This is validated on the colon polyp and lung
nodule datasets. For comparison, we plot the first three
MRMR selected original features and the first three pro-
jected dimensions after CRGE, on (testing) colon polyp and
lung nodule datasets in Fig. 2. The Fisher (linear dis-
criminant) score for the first three MRMR selected features
on the colon polyp dataset is 0.2725, and after CRGE, the
score improves to 0.7990. For the lung nodule dataset, the
score increases from 0.1083 to 0.6987, reflecting the impact
of CRGE. The numerical results demonstrate that our class
regularized graph embedding technique indeed enlarges the
class separability between negative and positive populations,
for both datasets. Note that many dimension reduction
methods are tested using image data where each dimension
is a pixel or voxel, for classification [7, 22] and registra-
tion [20]. As mentioned above, CAD image features are
extremely heterogeneous attributes as measuring different
nature imaging properties for 3D VOI structures, in differ-
ent metrics or dimensions.

3.3 Sparse Graph Embedding
As a companion to the above stratified “feature pursu-

ing”strategy of feature selection + graph embedding, an inte-
grated approach is Sparse (feature) Projections over Graph
(SPG) [6, 8]. SPG utilizes techniques from graph theory [9]
to construct an affinity graph over the data and assumes
that the affinity graph is usually sparse (e.g. nearest neigh-
bor graph). Thus the embedding results can be efficiently
computed. After this, lasso regression [13] is applied to ob-
tain the sparse basis functions. The data in the reduced
subspace is represented as a linear combination of a sparse
subset consisting of the most relevant features, rather than
using all features as in PCA, LDA or regular graph embed-
ding. Feature selection and graph embedding based dimen-
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Figure 2: Plot of the data samples (testing) accord-
ing to the first three features selected by MRMR
(a) and the first three dimensions from graph em-
bedding (b) on the colon polyp dataset. Similarly,
(c) and (d) are illustrated based on the lung nodule
dataset. The dimension coordinates on the figures
are not directly comparable.

sion reduction are jointly presented and formulated within
the same optimization framework.

The SPG algorithm is described as follows. Given a set
of N points X = {x1,x2, · · · ,xN} ⊂ Rn, the goal of SPG
is to find a transformation matrix A = (a1, · · · ,añ) that
maps the N points to a set of lower dimensional points
Y = {y1,y2, · · · ,yN} ⊂ Rñ, ñ ¿ n. For each i, yi(= A′xi)
is the projection of xi onto the lower dimensional space Rñ.
Furthermore, there is a sparsity constraint on each projec-
tion ai, and ‖ai‖0 < k (k < n), where ‖a‖0 is defined as
the number of nonzero entries of a. To obtain the optimal
projection, one first needs to create a graph G with affinity
matrix W over X , and then minimize the following energy
function

min
a

∑
i,j

(a′xi − a′xj)
2Wij

subject to: a′XDX ′a = 1 ,

‖a‖0 ≤ k ,

(17)

where X = (x1,x2, · · · ,xN ), D is a diagonal matrix and
each entry of the diagonal is the sum of the corresponding
row of W, i.e., Dii =

∑
j Wij . Since Eq. (17) is NP-hard, it

is split into two steps. The first step introduces the graph
Laplacian matrix [9] L = D − W , and the optimization
function in Eq. (17) can be reformulated as

1

2

∑
i,j

(a′xi − a′xj)
2Wij = a′XLX ′a (18)

The solution to (18) with the first constraint in (17) leads
to

XLX ′a = λXDX ′a. (19)

Once obtaining the embedding yi = a′xi, lasso regression
can be applied to get the sparse transformation according
to the following minimization

min
ã

(
N∑

i=1

(yi − ã′xi)
2 + β‖ã‖1

)
. (20)

After learning the sparse transformation a, we can project
all the samples into the lower and more intrinsic dimen-
sional space, in which we can perform classification. SPG,
in some sense, integrates the feature selection and dimension
reduction processes, which has been shown to be effective in
many applications, such as text clustering [6] and classi-
fication on many benchmark machine learning datasets [8].
However, we argue that our stratified approach which prunes
non-informative or redundant features from an information-
theoretic aspect before graph embedding or feature projection,
can simplify the optimization process of graph embedding on
a reduced feature set. This strategy may achieve better over-
all results, compared from the holistic sparsity-constrained
graph embedding (as SPG). The sparse approximation after
embedding (i.e., Eq. (20)) is also suboptimal. In practice,
superior classification performances over two hospital scale,
clinical datasets are demonstrated using our stratified fea-
ture pursuit framework, in later experimental section.

4. NONPARAMETRIC CLASSIFICATION
After finding the mapping φ and Y, we will perform un-

supervised clustering on Y for training negatives and posi-
tives separately. Data samples of the same class are divided
into local clusters, where instances from the same cluster are
more similar than those from different clusters. Each clus-
ter is then represented using a template. Based on the kNN
voting of the cluster templates, each instance in testing is
labeled. We explain the details of clustering and template
calculation in this section.

4.1 Clustering & Templates
The clustering process is performed according to a re-

cently introduced clustering algorithm, namely total Breg-
man divergence clustering [26]. This algorithm utilizes the
newly proposed divergence measure first presented in [44].
This divergence measure, called total Bregman divergence
(tBD), is based on the orthogonal distance between the con-
vex generating function of the divergence and its tangent ap-
proximation at the second argument of the divergence. tBD
is naturally robust and leads to efficient algorithms for soft
and hard clustering. For more details, we refer the readers
to [26, 44].

We employ the total Bregman divergence hard-clustering
algorithm [26] to saparate negative or positive data instances,
in Y space. Denote that c1 clusters, with the cluster cen-
ters {zi−}c1

i=1, are obtained for negatives; and c2 clusters
with centers {zj+}c2

j=1 for positives. The numbers of clus-
ters c1,c2 is chosen to minimize the intra-inter-validity index
[34], given by

index =
intra

inter
,

intra =
1

N

c∑
i=1

∑
y∈Ci

‖y − zi‖2,

inter = min
i,j

‖zi − zj‖2,

(21)



where Ci is the ith cluster with center zi. Each cluster is rep-
resented as the tBD center, termed t-center [26, 44], which
is the `1 norm median of all samples in the corresponding
cluster. For example, if {yi}N

i=1 is the set of samples, then
its t-center z is

z = arg min
z̃

N∑
i=1

δf (z̃,yi), (22)

where δf is the total Bregamn divergence generated by some
convex and differentiable generator function f :

δf (y1,y2) =
f(y1)− f(y2)− 〈y1 − y2,∇f(y2)〉√

1 + ‖∇f(y2)‖2
. (23)

Here, we use f(y) = ‖y‖2, and hence δf becomes the total
square loss [26, 44] and the t-center in Eq. (22) becomes

z =

N∑
i=1

aiyi , where ai =
1/

√
1 + 4‖yi‖2

(
∑

j 1/
√

1 + 4‖yj‖2)
. (24)

After learning the centers as templates, we can determine
whether a given sample is positive or negative, according
to the kNN voting on the set of trained positive/negative
t-centers.

4.2 Template Matching via kNN Voting
Nearest neighbor voting is a popular nonparametric clas-

sifier which has been studied extensively [39]. Given a test
sample yi, we need to find its k nearest neighbors from the
t-centers. Suppose the neighbors are {z1, z2, · · · , zk} and
the corresponding distance from yi to the neighbors are
{d1, d2, · · · , dk}. The distance di can be either Euclidean
distance or the vector angle difference (Euclidean distance
is used in our experiments). We define the empirical proba-
bility of yi being positive as p, and

p =

∑
(zj is positive) 1/dj∑

(zl is negative) 1/dl +
∑

(zj is positive) 1/dj
. (25)

Based on the p value, we can draw the FROC curve of sensi-
tivity and FP rate per case for training and testing datasets.
Eq. (25) is a soft kNN voting scheme using the recipro-
cal of distance 1/di. There are other options to calculate
p, e.g., using the counts of positive/negative t-centers. We
found that t-centers are more robust as they lead to better
sparsity and diversity of CAD lesion data distribution than
proximity data samples (as in kNN).

The number of nearest neighbors k is chosen during the
training/validation stage. Since the optimal k should lead
to the best performance of our algorithm, we set k to be
the one that maximizes the Area Under (the FROC) Curve
(AUC) on the training dataset. On the other hand, if only
a partial range of FROC has more meaningful impacts on
clinical practice (e.g., FP ∈ [2, 4] per case), we can search
k to optimize the partial AUC

k = arg max
k̃

AUC(FPrate ∈ [2, 4]). (26)

5. EXPERIMENTAL RESULTS
Unlike many existing CAD systems [15, 27, 32] where

small datasets are often used, our method is evaluated on
large scale datasets with representative varieties, collected
from dozens of hospitals across US, Europe and Asia. We

perform two important clinical tasks of classifying colonic
polyps and lung nodules based on 3D CT imagery features.
Lung cancer and colon cancer are the two leading deadly
cancers in western population.

5.1 Colon Polyp Detection & Retrieval
Data: The colon polyp dataset contains 134,116 polyp

candidates obtained from an annotated CT colonography
(CTC) database of 429 patients. Each sample is repre-
sented by a 96-dimensional computer extracted feature vec-
tor, describing its shape, intensity pattern, segmented class-
conditional likelihood statistics and other higher level fea-
tures [33, 28, 40, 45]. The patients were examined from
12 hospitals via different scanners from Siemens, GE and
Philips, and under various fecal-tagging imaging protocols.
Each patient was scanned in two positions, resulting two
(prone and supine) scans. There are 1,116 positives out of
the 134,116 samples. The CAD sensitivity is calculated at
per-polyp level for all actionable polyps ≥ 6mm (i.e., polyp
is classified correctly at least from one view), and the FP rate
counts the sum of two (prone-supine) scans per patient. The
colon polyp dataset is split into two parts, namely training
and testing dataset, both of which are split at patient level.
No data from the same patient is used for both training
and testing. Here, we do not employ N-fold cross valida-
tion because we intend to keep a portion of data (as our
testing dataset) which is always unseen for training. This
is practically critical to evaluate the more “true” or trustful
performance of a clinical product. As a result, the training
dataset contains all the instances detected from 216 patients,
and the testing dataset includes the rest 213 patients.

After estimating the parametric RVMMIL model [35], we
get the probability (classification score) of each candidate
being positive. Then we perform thresholding according to
the classification scores. Let the condition on classification
scores p(y = 1|xi) ≥ ρ̂ = 0.0157 as a cascade with high-
recall, we obtain a total of 3,466 data samples, pruned from
134,116 polyp candidates on the training dataset. All the
554 true positive lesion instances are contained, along with
other “harder” negatives, having higher classification scores.
For fine-level classification, we learn the mapping function
φ : X 7→ Y after feature selection using the pruned dataset,
and the t-centers are fitted in the reduced Y feature space for
the soft kNN classifier. We plot the FROC curves comparing
using RVMMIL as a single classifier, using SPG 2 as a in-
tegrated dimension reduction approach, and our two-tiered
coarse-to-fine classifier, on training and testing datasets, as
shown in Fig. 3. Fig. 3(a) shows the whole FROC curve.
Since reasonably small FP rates are clinically more meaning-
ful, we highlight in the partial-FROC with FP rate ∈ [2, 5],
as shown it in Fig. 3(b). For validation, the testing results
demonstrate that our CTF method can increase the sensi-
tivity of RVMMIL by 2.58% (from 0.8903 to 0.9161) at the
FP rate = 4, or reduce the FP rate by 1.754 (from 5.338
to 3.584) when sensitivity is 0.9097, which are statistically
significant improvements for colorectal cancer detection. It
also clearly outperforms other state-of-the-arts, e.g. SPG [6]
as shown in Fig. 3, as well as [33, 35, 40, 45].

To fully leverage the topology-preserving property of learned
Y, we also use it for polyp retrieval, which is defined as giv-
ing a query polyp in one prone/supine scan, to retrieve its

2We use the code implemented by Dr. Deng Cai
http://www.zjucadcg.cn/dengcai/SR/index.html
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Figure 3: (a) FROC comparison of using our pro-
posed CTF method, single-layer RVMMIL [35] clas-
sifier and spectral projection on graph (SPG) [6] on
classifying the training and testing datasets of colon
polyps. (b) Zoom in of (a) for the part of FP rate
∈ [2, 5].

counterparts in the other view. To achieve this, we find
the k nearest neighbors (kNN) of a query yi ∈ Y using the
classified polyps, and check whether the true match is in-
side the neighborhood of kNN. If the true matched polyp
is in the kNN, a ‘hit’ will occur. We record the retrieval
rate, as the ratio of the number of ‘hit’ polyp divided by
the query polyp number, at different k levels. Especially,
high retrieval rate with small k can greatly alleviate radiol-
ogists’ manual efforts on finding the counterpart same polyp,
with better accuracy. To show its advantage, we employ a
traditional geometric feature based polyp retrieval scheme,
namely geodesic distance that measures the geodesic length
of a polyp to a fixed anatomical point (e.g., rectum), along
the colon centerline curve. The retrieval rate comparison is
illustrated in Fig. 4, for training and testing datasets. The
results indicate that the retrieval accuracy can achieve 80%
when only 2 to 4 neighbors are necessary. This shows that
nonparametric kNN in Y subspace based retrieval signifi-
cantly improves the conventional polyp matching scheme,
contingent on geometric computation of geodesic distance
and the SPG based retrieval.

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Retrieval Rate on Colon Polyp Matching

Number of Neighbors

R
e
t
r
i
e
v
a
l
 
R
a
t
e

 

 

CRGE−KNN Training

CRGE−KNN Testing

GeodesicDist Traing

DeodesicDist Testing

SPG Training

SPG Testing

Figure 4: Retrieval comparison of using our pro-
posed CTF method, the single-layer RVMMIL [35]
classifier, and spectral projection on graph (SPG)
[6] on colon polyp retrieval, in training and testing.

5.2 Lung Nodule Classification
Data: The lung nodule dataset is collected from 1, 000

patients from multiple hospitals in different countries, using
multi-vendor scanners. Before sample pruning, there are
28, 804 samples of which 27, 334 are negatives and 1, 470 are
true nodule instances from 588 patients in training dataset.
The testing dataset contains 20, 288 candidates, with 19, 227
are negatives and 1, 061 are positives of 412 patients. Several
instances may correspond to the same lung nodule in one
volume. All types of solid, partial-solid and Ground Glass
Nodules with a diameter range of 4-30mm are considered.
Each sample has 112 informative features, including texture
appearance features (e.g. as the moments of responses to a
multiscale filter bank, [17, 29]), shape (e.g. width, height,
volume, number of voxels), location context (e.g. distance
to the wall, at the right or left of the wall), gray value, and
morphological features (e.g., obtained using the edge-guided
wavelet snake model as in [24]).

First, FROC analysis by using our proposed coarse-to-fine
classification framework, compared to single-layer RVMMIL
classifier, for the lung nodule classification in training and
testing is shown in Fig. 5. From the figure we can see
that the testing FROC of CTF dominates the RVMMIL
FROC, when the FP rate ∈ [3, 4], with 1.0 ∼ 1.5% con-
sistent sensitivity improvements. We also compared with
the SPG framework, and the FROC analysis is shown in
Fig. 6. The comparison also shows the higher classification
accuracy of our proposed method. Furthermore, our CTF
classification performance compares favorably with other re-
cent developments in lung CAD [16].

Next we evaluate the effects of using t-center (default),
mean or median as estimated templates in CTF. The com-
parisons are shown in Fig. 8 and Fig. 9 on the training and
testing parts of the lung dataset. The comparison validates
that t-center outperforms the templates formed by typical
mean or median method. Last, we compare our method to
a related locality-classification framework, SVM-kNN [48]
which shows highly competitive results on image based mul-
ticlass object recognition problems. SVM-kNN uses kNN to
find data clusters as nearest neighbors and train a support
vector machine (SVM) on each locality group for “divide-
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Figure 5: (a) FROC analysis using our proposed
CTF method and RVMMIL classifier, in training
and testing of the lung nodule dataset. (b) Zoom
in of (a) for the part of FP rate ∈ [2.6, 4.5].

and-conquer” classification [48]. The comparison results are
illustrated in Fig. 7, which shows that our method outper-
forms the SVM-kNN method on both training and testing
datasets.

6. CONCLUSIONS & FUTURE WORK
Our main contributions are summarized in three folds.

First, we introduce a new coarse-to-fine classification frame-
work for computer-aided (cancer) detection problems by ro-
bustly pruning data samples and mining their heterogeneous
imaging features. Second, we propose a new objective func-
tion to integrate the between-class dissimilarity information
into embedding method. Third, two challenging large scale
clinical datasets on colon polyp and lung nodule classifica-
tion are employed for performance evaluation, which show
that we outperform, in both tasks, the state-of-the-art CAD
systems [16, 30, 33, 40, 45] where a variety of single para-
metric classifiers were used. For future work, we plan to
investigate optimizing the fine-level classification in an as-
sociate Markov network [42] setting, which integrates struc-
tured prediction among data samples (i.e., graph parameters
are jointly learned with classification).
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Figure 6: FROC analysis using our proposed CTF
method, RVMMIL classifier and SPG in training
and testing of the lung nodule dataset.
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Figure 7: FFROC analysis using our proposed CTF
method, RVMMIL classifier and SVM-kNN classifi-
cation scheme, in training and testing.
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