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Translational Relevance 

While rapid technical advances are furthering the application of deep learning in cancer 

prognostication based on imaging data, the reliance on manually selected slices and 

segmentation, the failure to account for traditional risk factors, and the limited sample sizes 

without ethnic diversity are major obstacles for translation into the clinic. Using data from FDG-

PET imaging, we devised the first deep learning-based fully-automated tool for predicting 

overall survival in patients with oropharyngeal squamous cell carcinoma. Our tool revealed a 

robust performance across different geographic regions, PET scanners, and treatment protocols 

in a large, international study. On the one hand, such an approach enables an objective, unbiased, 

and rapid assessment that is suitable for clinical prognostication. On the other hand, the use of 

our biomarker has the potential to tailor treatment at the individual level. 
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Abstract 

Purpose: Accurate prognostic stratification of patients with oropharyngeal squamous cell 

carcinoma (OPSCC) is crucial. We developed an objective and robust deep learning-based fully-

automated tool called the DeepPET-OPSCC biomarker for predicting overall survival (OS) in 

OPSCC using [18F]fluorodeoxyglucose PET imaging.  

Experimental Design: The DeepPET-OPSCC prediction model was built and tested internally 

on a discovery cohort (n = 268) by integrating five convolutional neural network models for 

volumetric segmentation and ten models for OS prognostication. Two external test cohorts were 

enrolled – the first based on the Cancer Imaging Archive (TCIA) database (n = 353) and the 

second being a clinical deployment cohort (n = 31) – to assess the DeepPET-OPSCC 

performance and goodness of fit.  

Results: After adjustment for potential confounders, DeepPET-OPSCC was found to be an 

independent predictor of OS in both discovery and TCIA test cohorts (HR = 2.07; 95% CI 1.31–

3.28 and HR = 2.39; 1.38–4.16; both P = 0.002). The tool also revealed good predictive 

performance, with a c-index of 0.707 (95% CI 0.658–0.757) in the discovery cohort, 0.689 

(0.621–0.757) in the TCIA test cohort, and 0.787 (0.675–0.899) in the clinical deployment test 

cohort; the average time taken was 2 min for calculation per exam. The integrated nomogram of 

DeepPET-OPSCC and clinical risk factors significantly outperformed the clinical model (AUC 

at 5 years: 0.801 [95% CI 0.727–0.874] versus 0.749 [0.649–0.842]; P = 0.031) in the TCIA test 

cohort. 

Conclusions: DeepPET-OPSCC achieved an accurate OS prediction in patients with OPSCC 

and enabled an objective, unbiased, and rapid assessment for OPSCC prognostication. 
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Introduction 

Oropharyngeal squamous cell carcinoma (OPSCC) is frequently associated with human 

papillomaviruses (HPV) infection (1). However, there are significant differences in five-year 

overall survival (OS) rates between HPV-related (HPV+) and tobacco- and alcohol-related 

(HPV–) cases (75%−80% versus 45%−50%, respectively) (2). Recent years have witnessed a 

growing interest in less-intensive treatment approaches for HPV+ OPSCC, with the main goal of 

reducing toxicity while maintaining comparable disease control rates (3, 4). However, there is 

still insufficient evidence to recommend de-intensified treatment protocols owing to the risk of 

less favorable outcomes (5, 6). Moreover, these de-escalation therapies depend on patient 

response to induction chemotherapy (7, 8) which remains unpredictable, particularly in the 

pretreatment phase (9). More worryingly, there remains a paucity of effective therapies for 

patients with HPV– OPSCC (3), although a few enhanced therapies for such patients have been 

investigated (10). In this scenario, novel operator-independent risk stratification tools are eagerly 

awaited to facilitate and optimize clinical trials by identifying specific patient subgroups who are 

more likely to benefit from novel therapeutic approaches. This would ultimately make the 

treatment of OPSCC more personalized and reduce unnecessary morbidity (11, 12).  

As for HPV+ OPSCC, PIK3CA mutations have been associated with less favorable 

disease control in de-escalation trials (13). On the contrary, TRAF3 and CYLD losses have been 

reported to portend a favorable prognosis (14). With regard to HPV– cases, mutations in p53 

have been associated with poor outcomes (15). Moreover, a measure of intratumor genetic 

heterogeneity (termed quantitative mutant allele tumor heterogeneity) has been linked to 

unfavorable outcomes (16). Despite intense research on the ability of these tools to 

comprehensively capture the molecular underpinnings of head and neck malignancies, these 
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biomarkers have not yet been implemented in clinical practice. Compared with tissue-based 

biomarker testing, algorithm-guided medical imaging features have inherent advantages in terms 

of being real-time, non-invasive, independent of sampling bias, and not limited to the portion of 

tested tissue (17). While radiomics – defined as high throughput extraction of quantitative 

imaging features – has been successfully used for predicting prognosis in OPSCC (18-21), its 

reproducible application in everyday practice is limited because of its dependence on manual 

segmentation and handcrafted features (17).  

Deep learning-based artificial neural networks comprise algorithms and techniques that 

enable computers to identify complex patterns in large data sets without resorting to handcrafted 

feature extraction. In human cancer imaging, deep learning approaches have increasingly been 

applied to different steps of the entire workflow (22-24). While rapid technical advances are 

furthering the application of deep learning in cancer prognostication based on image data (25-28), 

their implementation in clinic practice remains a major hurdle. Among the methodological 

barriers, the reliance on manually selected two-dimensional slices and manual segmentation 

(which have a significant adverse impact in terms of reproducibility), the failure to account for 

traditional risk factors, and the limited sample sizes without ethnic diversity are major obstacles 

for translation.  

The objective of this study was to develop a scalable, objective, and robust deep learning-

based fully-automated tool – termed DeepPET-OPSCC biomarker – for predicting OS in patients 

with OPSCC using [18F]fluorodeoxyglucose (FDG) PET imaging. DeepPET-OPSCC – which 

integrates an automated three-dimensional (3D) deep segmentation model with a deep learning 

Cox model – was subsequently tested in an international multicenter study to validate its 

applicability and generalizability regardless of potential confounders. 
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Materials and Methods 

Study design 

This international retrospective study included three patient cohorts – a discovery cohort, on 

which the best-fitting prediction models were built and tested internally, and two external test 

cohorts, on which performance and goodness of fit were assessed. Inclusion criteria were as 

follows: 1) non-metastatic (M0) OPSCC and absence of other concomitant malignancies; 2) 

availability of baseline pretreatment PET images covering the head and neck region; 3) treatment 

with curative intent; and 4) follow-up continued for at least 18 months or until death. Patients 

without identifiable tumors on PET/CT scans were excluded.  

All patients in the three cohorts were staged according to the seventh edition of the 

American Joint Committee on Cancer (AJCC) staging system. Details are available in the 

Supplementary Protocol (Sections 1 and 4). OS – which was defined as the time from cancer 

diagnosis to the last follow-up or death from any cause – served as the main outcome measure. 

Ethics approval for the retrospective review of imaging and clinical data was received from the 

local ethics committees for the discovery and validation cohorts. The need for informed consent 

was waived. 

Discovery cohort  

The discovery cohort included 268 patients who had been treated between June 2006 and 

December 2017 at the Linkou Chang Gung Memorial Hospital (CGMH; Taiwan, ROC). The 

CGMH database contained complete information on demographics, clinical characteristics, and 

therapeutic procedures of each patient and was, thus, selected for model development. FDG-
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PET/CT images were acquired using either GE or Siemens scanners, within a median of 9 (IQR 

3–14) days from the pathological diagnosis. HPV status was ascertained using p16 

immunohistochemistry. According to the CGMH treatment policy, OPSCC patients were treated 

with concurrent chemoradiotherapy (CCRT), whereas those in T1–T2 stages with no nodal 

metastasis received radiotherapy or surgery. Patients with advanced-stage OPSCC in a 

prospective clinical trial received induction chemotherapy, followed by CCRT (IC + CCRT). 

External test cohorts  

The first test cohort consisted of 353 patients with OPSCC from Western countries. The Cancer 

Imaging Archive (TCIA) public database was thoroughly queried for PET image data and 

clinical information of patients who had been treated between October 2003 and November 2014 

at six centers (Hôpital Général Juif, Centre Hospitalier Universitaire de Sherbrooke, Hôpital 

Maisonneuve-Rosemont, and Centre Hospitalier de l'Université de Montréal, Canada; University 

of Texas MD Anderson Cancer Center, USA; MAASTRO Clinic, the Netherlands). The HPV 

status, which was available for 44% of the cases, was ascertained by in situ hybridization or p16 

immunohistochemistry. Most patients received CCRT treatment, whereas others were treated 

with either single or combined modalities—for example, surgery, radiotherapy, induction 

chemotherapy, or cetuximab. 

The second test cohort included 31 patients with OPSCC from an Asian country. We 

enrolled patients who had been treated between April 2011 and March 2019 at two hospitals 

(First Affiliated Hospital of Zhejiang University [ZJU1] and Nanfang Hospital, China) with 

available baseline PET imaging. Except for one HPV case (based on the results of p16 

immunohistochemistry), the HPV status was unknown for all patients. The study patients were 
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treated with surgery, CCRT, or both. The complete model was locked before deployment in 

ZJU1. 

 

DeepPET-OPSCC discovery and internal testing 

Nested cross-validation  

Figure 1A summarizes the discovery and internal testing of the DeepPET-OPSCC prognostic 

biomarker, which comprises five PET image segmentation models and ten prognostic models 

(Supplementary Protocol Sections 2 and 3). All models were trained in the discovery cohort 

using nested five-fold cross-validation, with 64%, 16%, and 20% of the data as the training, 

validation, and test sets at each repeat time (one fold), respectively. The same data-splitting 

approach was used for segmentation and prognosis. This technique was implemented in order to 

avoid the overoptimistic issue inherent to conventional cross-validation, as individual DeepPET-

OPSCC scores in the discovery cohort were obtained in the setting of internal testing (i.e., test 

sets in the nested cross-validation) with automated segmentation. 

Segmentation models  

All PET image volumes were converted to standardized uptake values (SUV) maps/volumes. For 

generating annotations of tumor and lymph nodes in the discovery cohort, volumetric delineation 

was performed semi-automatically by an experienced nuclear radiologist (NMC), with 14 years 

of experience in nuclear imaging and image processing. The segmentation models were built 

upon the 3D version of nnUNet (29), with extensive data augmentation for improving 

generalization performance (30). The full description is provided in Supplementary Protocol 

(Section 2). 
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Prognostic models  

The prognostic models were trained on three types of 3D region-of-interests (i.e., SUV map, 

automatically segmented tumor mask, and node-to-tumor [N-T] distance map; Figure 1C) using 

OS time and patient status (alive versus dead) as labels. The N-T distance map was included as a 

region-of-interest type because nodal metastases to the lower neck reflect spread to more distant 

sites and are associated with reduced OS (2,31). The prognostic model consisted of 3D 

convolutional neural networks that relied on the Cox proportional hazards assumptions 

(ConvCox) (32). Nonlinear associations between 3D images and time-dependent censored OS 

were directly modeled. The architecture (Figure 1C) and implementation of our ConvCox 

network are detailed in Supplementary Protocol (Section 3.2). 

The following scheme was adopted to train the prognostic models in each of the five 

folds. For each fold, we separately trained (with extensive data augmentation) two distinct 

ConvCox models: 1) DeepPET-OPSCC-T with two input channels (SUV and tumor mask), and 

2) DeepPET-OPSCC-TN with three input channels (SUV, tumor mask, and N-T distance map). 

Given that there is more variability in the appearance image (N-T distance map) as compared to 

that in the binary image (tumor mask), the deep learning model may not capture adequate 

information in the tumor mask. Therefore, in order to allocate sufficient network capacity for 

adequately and comprehensively capturing both tumor and lymph node information, we trained 

the two models separately. The optimal ConvCox models were selected in the validation set 

based on the highest Harrell’s concordance index (c-index) (33) and subsequently tested in the 

test set. The predicted risk score reflecting the probability of less favorable OS in each test set 

was normalized by subtracting, for each fold, the mean risk score in the training set. The final 

continuous DeepPET-OPSCC score was calculated by averaging the DeepPET-OPSCC-T and 
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DeepPET-OPSCC-TN scores. The nested cross-validation process was repeated five times, 

thereby yielding five DeepPET-OPSCC-T and five DeepPET-OPSCC-TN models.  

In order to determine the DeepPET-OPSCC risk category (i.e., dichotomized into high 

versus low risk), the median value of all DeepPET-OPSCC scores obtained in the test sets was 

used as the cut-off threshold. Further, the continuous DeepPET-OPSCC score was categorized 

into three, four, or five risk subgroups using tertiles, quartiles, and quintiles, respectively, of the 

total risk scores.  

 

External testing 

For external testing (Figure 1B), the models trained for segmentation and OS prediction were 

integrated into the UNet and ConvCox ensemble models, respectively. Further, the ten 

DeepPET-OPSCC-T/TN normalized prediction scores were averaged to obtain the final 

DeepPET-OPSCC score, which was subsequently dichotomized to obtain the DeepPET-OPSCC 

risk category based on the previously determined cutoff threshold from the discovery cohort.  

 

Visualization 

A renormalized class-activation heatmap was used to visualize/highlight tumor and nodal areas 

associated with unfavorable OS. Our heatmap represented risks at both the voxel and patient 

levels for facilitating the visual interpretation of the local and global risks. The heatmap value of 

each voxel directly reflected its predicted risk score. The heatmap values of all voxels were 

renormalized to [0, 1] based on the maximal and minimal values in the corresponding training set.  
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Comparison with other computational approaches 

To compare our method to other computational prognostic approaches, we developed three 

distinct tools – lightweight 3D ResNet-OPSCC (designed for insufficient training data), 2D 

DeepPET-OPSCC (using the largest tumor and lymph node slices as network input), and a 

radiomics signature that reflected both tumor and nodal characteristics –  which were trained and 

assessed as DeepPET-OPSCC (Supplementary Protocol Section 3.5). 

 

Research reproducibility 

The major components of our tool have been made available in open-source repositories and 

libraries – including PyTorch (https://pytorch.org/), nnUNet (https://github.com/MIC-

DKFZ/nnUNet), and SALMON (https://github.com/huangzhii/SALMON). All experimental and 

implementation methods have been also described in sufficient detail (Supplementary Protocol) 

to enable independent replication by other researchers. The trained prognostic models, inference 

code, and an illustrative example of SUV image, tumor mask, and N-T distance map are publicly 

available through the DeepPET-OPSCC GitHub repository (https://github.com/deep-

med/DeepPET-OPSCC-Example). All of the data in the TCIA test cohort can be accessed at The 

Cancer Imaging Archive (http://www.cancerimagingarchive.net/).  

 

Statistical analysis 

https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
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This study conforms to the REMARK guidelines (34) and the acceptance criteria set forth by the 

AJCC for the inclusion of risk models (Table S1 and S2) (35). The performance of the 

automated segmentation model was assessed as described in the Supplementary Protocol 

Section 2.6. 

The c-index was used to investigate the predictive ability of the prognostic model. We 

carried out a time-dependent receiver operating characteristic (ROC) curve analysis and 

calculated the areas under the curves (AUCs) for OS at two and five years. The overall c-index 

and AUC in the discovery cohort were calculated by concatenating all normalized scores from 

the five test sets. In order to assess the improvements in the c-indexes between the compared 

models, the Student’s t-test for dependent samples was used (36). A similar approach has been 

implemented in previous studies (37, 38). The 95% confidence intervals (CIs) for AUC were 

constructed from 1000 bootstrap replicates of the test sets of discovery cohort and external test 

cohorts. In addition, the z-test was used to compare the differences in bootstrapped AUCs from 

different models (39).  

Univariable and multivariable Cox proportional hazards regression survival analyses 

were also conducted. The Wald χ2 test was used to calculate P values in multivariable models. 

Because of missing HPV information (56%) in the TCIA test cohort, the HPV status was not 

entered into the multivariable model. Because only 26 patients who died had a known HPV 

status in the TCIA test cohort, cases in the discovery and TCIA test cohorts with existing HPV 

data were grouped in a unique cohort (i.e., the entire cohort) for multivariable analyses. Due to 

the limited number of patients (n = 31), events (n = 15), and HPV information (n = 1) in the 

clinical deployment test cohort, multivariable and subgroup analyses were not performed for this 

cohort. In addition, smoking information was missing in seven of the eight external centers; 
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therefore, this variable was investigated only in the discovery cohort. Kaplan-Meier estimate 

curves were generated for OS, and survival differences were compared with the log-rank test. 

Further, Spearman’s correlation coefficients were calculated to investigate the associations 

between the DeepPET-OPSCC risk category and clinical variables. Following established 

criteria for developing nomograms in the field of oncology (40), we devised integrated 

nomograms from Cox regression coefficients using inputs from the DeepPET-OPSCC score and 

clinical risk factors. All calculations were performed in R, version 3.6.1. Statistical significance 

was determined by P value <0.05.  

 

Results 

Patient characteristics 

Table 1 presents the general characteristics of the study participants. Patients in the external test 

cohorts (n = 384) underwent PET imaging with nine unseen scanners from three vendors 

(Supplementary Protocol Table 1). The HPV status was available for 424 (65%) cases (165 

HPV+ and 259 HPV–). Among patients for whom the HPV status was known, there were 211 

(79%) and 47 (30%) HPV– cases in the discovery and TCIA test cohorts, respectively. Primary 

radiotherapy, either with or without chemotherapy, was given to 258 (96%) patients in the 

discovery cohort as well as to 339 (97%) and 7 (23%) patients in the two external test cohorts, 

respectively. The remaining patients were treated with primary surgery, either with or without 

postoperative treatments. Chemotherapy was used for 252 (94%), 255 (72%), and 25 (81%) 

patients in the discovery and two external test cohorts, respectively. The clinical characteristics 
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of the entire cohort with known information of HPV status, cT, cN, and cTNM stages are 

summarized in Table S3. 

 

DeepPET-OPSCC  

Univariable and multivariable analyses 

The distribution of the DeepPET-OPSCC score in the discovery and TCIA test cohorts is 

depicted in Figure S1. The median DeepPET-OPSCC score (–0.12) in the discovery cohort was 

used as the cutoff to obtain the DeepPET-OPSCC risk category (dichotomized into high risk 

versus low risk), which was a strong predictor of OS in all the three study cohorts (Figures 2A 

and 2B; Table S4). After adjustment for age, sex, HPV status, cT stage, cN stage, maximum 

SUV (SUVmax), metabolic tumor volume (MTV), and use of chemotherapy in multivariable 

analysis, the DeepPET-OPSCC risk category was retained as an independent predictor of OS 

(discovery cohort: HR 2.07, 95% CI 1.31–3.28; TCIA test cohort: HR 2.39, 95% CI 1.38–4.16; P 

= 0.002; Table 2, Table S5). The use of chemotherapy was associated with a reduced mortality 

in patients from the TCIA test cohort. However, after adjusting for the HPV status, this 

significance was no longer evident (Table 2). 

On multivariable analysis, the components of DeepPET-OPSCC (i.e., -T and -TN models) 

were independent predictors of OS in the discovery and TCIA test cohorts (Tables S6 and S7). 

The continuous DeepPET-OPSCC score was also retained as a strong predictor in the 

multivariable model (Table S8). Validation with additional clinical variables (e.g., smoking) as 

well as pathological (e.g., tumor grade) and immunohistochemistry-based (e.g., Cyclin D1) 

markers in the discovery cohort is provided in Tables S9–S11.  
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Prediction accuracy 

The c-indices of the DeepPET-OPSCC score for OS were 0.707 (95% CI 0.658–0.757) and 

0.689 (95% CI 0.621–0.757) in the discovery and TCIA test cohorts, respectively. The 

constituents of DeepPET-OPSCC (i.e., -T and -TN models) were also strongly associated with 

OS (Table 3). Nonetheless, ensemble models provided more robust and reliable performance 

(especially with respect of unseen data) than a single model both in terms of OS prediction and 

in univariable and multivariable analyses (Tables 3, S4–S7, and S12). In addition, prognostic 

markers generated by three other computational approaches of 3D ResNet-OPSCC, 2D 

DeepPET-OPSCC, and conventional radiomics all underperformed (P < 0.01) the DeepPET-

OPSCC score in both the discovery and TCIA test cohorts, with the exception of 3D ResNet-

OPSCC in the TCIA test cohort (P = 0.21; Table S13; Supplementary Protocol, Section 3.5).  

Visualization 

Our tool allowed obtaining a renormalized heatmap that can depict risk at both voxel and patient 

levels through a hot-cold color code (Figure 3; Figure S2A-E). We found that the DeepPET-

OPSCC-T model focused mostly on the tumor’s interior, while the DeepPET-OPSCC-TN model 

tended to fixate on the interface between the tumor and lymph nodes. 

 

Subgroup analyses 

The DeepPET-OPSCC risk category retained its ability to predict OS when patients in the entire 

cohort with a known HPV status were stratified into different subgroups according to HPV, cT, 

cN, and cTNM stages, or the use of chemotherapy (Figures S3–S10). The majority of the study 

patients were staged as cTNM IVA (113 [70%] of the 161 HPV+ patients and 158 [61%] of the 
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258 HPV– patients), and the DeepPET-OPSCC risk category was capable of predicting OS in the 

two subgroups (for high versus low risk, HR 4.20, 95% CI 1.18–14.92; P = 0.016; Figure 2C; 

HR 2.64, 95% CI 1.65–4.21; P < 0.001; Figure 2D). We also investigated the relationship 

between the DeepPET-OPSCC risk category and the usage of induction chemotherapy before 

CCRT. For patients with HPV– and TNM stage IVB cancer, induction chemotherapy was 

associated with an inferior OS than CCRT alone in the DeepPET-OPSCC high-risk group (HR 

2.44, 95% CI 1.03–5.79; P = 0.037; Table S14, Figure S14).  

 

Correlations between DeepPET-OPSCC and clinical parameters 

The DeepPET-OPSCC risk category was significantly correlated with a number of clinical 

parameters, including sex, HPV status, cT stage, cN stage, cTNM stage, SUVmax, and MTV – 

both in the entire cohort (Table S15) and TCIA test cohorts (Table S16). Scatter plots of the 

relationships between SUVmax/MTV and DeepPET-OPSCC scores are provided in Figure S15. 

A large proportion of HPV+ (e.g., among 104 HPV+ cases, DeepPET-OPSCC identified 82 

patients being at low risk and 22 as being at high risk), cT1-cT3, cN0-cN2, and cTNM stage I-

IVA diseases were classified as being at low risk by DeepPET-OPSCC in the validation cohort, 

thereby supporting the clinical utility of DeepPET-OPSCC in Western populations.  

 

Nomograms  

Finally, we devised integrated nomograms by combining DeepPET-OPSCC score and the 

clinical risk factors (i.e., age; sex; HPV status; and cT, cN, and cTNM stages). In the subgroup of 

patients with known HPV status, the five-year AUCs for the integrated nomogram were 0.793 
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(95% CI 0.749–0.834) and 0.801 (95% CI 0.727–0.874) in the discovery and TCIA test cohorts, 

respectively, thereby outperforming clinical models and each individual risk factor (e.g., clinical 

model: 0.749 [95% 0.649–0.842], clinical model plus MTV: 0.754 [0.659–0.843], HPV: 0.624 

[0.530–0.729], and AJCC cTNM stages: 0.517 [95% CI 0.423–0.614] in the TCIA test cohort 

with known HPV status; P < 0.05; Figure 2E; Table S17). A full description—including c-

indices and two-year AUCs—is provided in Tables S18 and S19 and Figures S16 and S17 as 

well as in Supplementary Protocol Section 5. On analyzing all of these results, the single 

DeepPET-OPSCC score was never found to underperform (P > 0.05) the clinical model when 

the HPV status was missing in both the discovery and TCIA test cohorts. 

 

Clinical deployment: fully-automated prediction 

Different procedures – including SUV conversion, segmentation, and prognostic prediction – 

were assembled into a unique fully automated processing pipeline, whose performance was 

analyzed in the clinical deployment test cohort. The mean processing time for the complete 

automated process was 2 min 6 sec per PET exam on an NVIDIA Titan RTX-6000 GPU. The 

fully-automated tool significantly predicted OS (P = 0.002; Figure S18) with a c-index of 0.787 

(95% CI 0.675–0.899), thereby indicating a robust performance across different geographic 

regions, PET scanners, and treatment protocols. In this cohort, the DeepPET-OPSCC 

outperformed the clinical model and each individual risk factor when the HPV was missing 

(Figure S19).  

 

Discussion 
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Using data from FDG-PET imaging, we devised a deep learning-based fully-automated tool – 

based on deep segmentation and prognostication models – for predicting OS in patients with 

OPSCC. The system, which captured PET information from both the primary tumor and lymph 

nodes, offered a rapid (calculation time: ~2 min) prediction of OS and performed satisfactorily in 

an international multicenter study. Notably, the DeepPET-OPSCC risk category was retained in 

the multivariable analysis as an independent predictor of OS in all cohorts, with an 

approximately two-fold increased risk for mortality in the high-risk versus low-risk group. 

Further, the nomogram combining the DeepPET-OPSCC score, age, sex, HPV status, cT, cN, 

and cTNM stage significantly improved the prediction accuracy of OS.  

Our work is currently the largest computational imaging-based prognostic study 

conducted in patients with OPSCC (18-21). The DeepPET-OPSCC score had c-indices of 0.689–

0.787 for the prediction of OS from baseline imaging—these values being substantially higher 

than those previously reported (0.59–0.63) for radiomics markers (19, 20). In addition, our tool 

showed a robust performance on PET data from different geographic regions, scanners, and 

treatment protocols. While the discovery cohort consisted of patients treated primarily with 

combined radiotherapy and chemotherapy, the DeepPET-OPSCC biomarker is applicable to 

patients primarily treated with surgery or who did not receive chemotherapy. Given that the 

AJCC principle requires a staging system that must be applicable to any treatment approach that 

meets accepted guidelines (2), the DeepPET-OPSCC score – which remained an independent 

predictor after adjustment for different treatments – might have the potential to complement the 

future staging system. In addition, our automated tool is highly objective and reproducible.  

Recent years have witnessed a growing interest in the development of deep learning-

based prognostic systems based on imaging findings for patients with malignancies (25-28). 
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However, published approaches have inherent limitations, which include the need for manual 

segmentation and the inability to extract the three-dimensional tumor characteristics from two-

dimensional slices. Moreover, fully automated prediction systems may improve the objectiveness 

and are currently gaining traction (41).  

Our prognostic tool was implemented on FDG-PET images, which exhibit high image 

contrast and small variation among various acquisitions and reconstructions (42), thereby making 

fully-automated image analysis a more promising task. While the segmentation model (nnUNet) 

is clinically applicable for distinct segmentation tasks (23,29), extensive data augmentation 

enabled the generalization of this model to unseen domains (30). The ConvCox prognostic model 

developed in our study is a regression network that has the capacity to learn time-dependent 

events directly from all the available data. This is a highly desirable feature for prognostic 

applications, where the number of patients with complete baseline imaging data tends to be 

limited. Moreover, the ConvCox network is designed with consideration of several architectural 

modifications, optimized training and inference configurations, incorporation of domain 

knowledge (e.g., N-T distance map), and the model ensemble of -T and -TN constituents 

(focusing on the tumor itself and its relationship with lymph nodes, respectively), thereby 

improving its robustness and generalization. In deep learning practice, assembling models 

trained from several training-validation data splits (e.g., five models trained from nested five-

fold cross-validation in the current study) is a commonly utilized solution that is efficient and 

effective in improving model robustness on unseen data (23, 29, 41). 

The DeepPET-OPSCC outperformed all other clinical variables for OS prediction at two 

and five years. In addition, it was found to correlate with known clinical and PET-derived 

prognostic parameters. Taken together, these observations indicate an association between the 
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prognostic features captured by deep learning and established prognostic markers in OPSCC, 

including the HPV and AJCC stages. These interrelationships may also explain why DeepPET-

OPSCC performed similarly well in Asian and Western populations, despite different disease 

characteristics (e.g., different proportions of HPV+ cases and five-year OS). Moreover, 

DeepPET-OPSCC followed the path of the eighth AJCC staging system, which downstaged 

stage IV to stages I–III for HPV+ OPSCC. Accordingly, 182 (67%) of the 271 cases with stage 

IV disease in the TCIA test cohort (70% HPV+) were classified as being at low risk by the 

DeepPET-OPSCC. 

Further, our tool enabled us to obtain a renormalized heatmap that can depict risk at both 

patient and voxel levels through a hot-cold color encoding. While we hypothesize that 

personalized radiation plans with higher tumoricidal doses could potentially target the identified 

high-risk regions (12, 43), this requires further investigation. 

The application of DeepPET-OPSCC enabled the identification of different prognostic 

subgroups even when current classification approaches (i.e., HPV and AJCC stages) were 

applied. For example, we were able to show that certain subgroups of HPV+ patients with AJCC 

stage IVA or N2 disease (Figures 2C, S5, and S11–S13) have favorable outcomes and may 

benefit from less intensive treatment protocols (e.g., de-intensified radiotherapy or 

chemoradiotherapy, which have been shown to achieve clinically favorable results for HPV+ 

patients with respect to induction chemotherapy response (7, 8), without evidence of hypoxia on 

baseline or inter-treatment PET imaging (9), or T0-T2, N0-N2c OPSCC [AJCC seventh edition]) 

(44). Conversely, certain subgroups of HPV– patients with cT1-3, T4a, N1, N2, AJCC III, or 

IVA stages (Figures 2D, S7–S9, and S11–S13) had a dismal prognosis and, thus, may be 

candidates for more aggressive treatment strategies (e.g., the combination of an antagonist of the 
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multiple inhibitor-of-apoptosis protein [Debio 1143] with chemoradiotherapy outperformed 

high-dose chemoradiotherapy in patients with stages III, IVA, and IVB [AJCC seventh edition] 

head and neck cancer [58% are HPV– OPSCC]) (10). Interestingly, CCRT was associated with a 

better OS compared to induction chemotherapy and CCRT in patients with the most advanced 

disease stage (HPV– and stage IVB) and a high-risk DeepPET-OPSCC category. This can be 

explained by the observation that higher toxicity delays or even prevents patients from 

completing subsequent CCRT, which is critical for maximizing OS (3).  

Several caveats of our study must be considered. First, the performance of the DeepPET-

OPSCC prognostic biomarker needs to be tested in larger longitudinal investigations. Second, 

unavailable data on HPV status for several patients in the TCIA and clinical deployment test 

cohorts pose a limitation regarding the ability to generalize our conclusions with regard to the 

presence or absence of HPV infections. Third, the retrospective nature of the study did not 

permit the application of the more recent (eight edition) AJCC staging system, although this is 

likely non-influential on our main conclusions. Fourth, the automated tool may be unsuitable to 

segment a minor percentage (1−3%) of early-stage tumors, which will ultimately require manual 

segmentation. Finally, we selected cut-off values for risk categorization based on the Asian 

population – with most patients being HPV–. In future prospectively designed studies with larger 

sample sizes, it might be reasonable to select more suitable cut-off values separately for HPV+ 

and HPV– patients. 

In summary, the primary novelty of this large international study lies in the possibility of 

obtaining an accurate prediction of OS in patients with OPSCC through a fully-automated deep 

learning-based tool. On the one hand, such an approach enables an objective, unbiased, and rapid 
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assessment that is suitable for clinical prognostication. On the other hand, the use of our 

biomarker has the potential to tailor treatment at the individual level. 
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Figure legends 

Figure 1. Flowchart for discovery and external testing of the DeepPET-OPSCC prognostic 

biomarker.  

(A) The DeepPET-OPSCC biomarker consists of five UNet segmentation models and ten 

convolutional Cox (ConvCox) prognostic models. All models were trained by nested five-fold 

cross-validation in the discovery cohort, with 64%, 16%, and 20% of all data considered as 

training, validation, and test sets for each repeat time (one fold), respectively. For each fold, 3-

dimensional (3D) SUV images and the corresponding manual masks were used to train and 

validate a UNet model, which was subsequently applied to the test set to segment the tumor and 

lymph nodes. Based on these results, the node-to-tumor (N-T) distance maps were generated. 

Thereafter, 3D regions-of-interest and the corresponding OS time and status were used to train 

and tune two distinct ConvCox models: 1) a DeepPET-OPSCC-T model with two input channels 

(SUV and tumor mask), and 2) a DeepPET-OPSCC-TN model with three input channels (SUV, 

tumor mask, and N-T distance map). The optimal ConvCox models were subsequently tested in 

the test set to predict risk scores, thereby reflecting the probabilities of less favorable OS. Upon 

completion of five folds, DeepPET-OPSCC scores were obtained for all data in the discovery 

cohort for the purpose of the internal test setting. (B) For external testing, the five UNet and ten 
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ConvCox models were integrated to generate the DeepPET-OPSCC score. The median value of 

all DeepPET-OPSCC scores in the discovery cohort was used as the cutoff threshold to classify 

patients as being at high versus low risk. (C) Architecture, input, and output of the 3D ConvCox 

network in the DeepPET-OPSCC-T/-TN prognostic models. CGMH, Chang Gung Memorial 

Hospital; SUV, standardized uptake values; -T1, DeepPET-OPSCC-T model 1; -TN1, DeepPET-

OPSCC-TN model 1; TCIA, The Cancer Imaging Archive. 

 

Figure 2. Kaplan-Meier plots and time-dependent ROC curves for the DeepPET-OPSCC 

biomarker.  

Patients in the discovery cohort (A) and TCIA test cohort (B) stratified according to DeepPET-

OPSCC risk category. HPV+ patients and cTNM stage IVA disease (C) stratified according to 

DeepPET-OPSCC risk category. HPV– patients and cTNM stage IVA disease (D) stratified 

according to DeepPET-OPSCC risk category. Figures S11-S13 depict Kaplan-Meier plots using 

DeepPET-OPSCC risk categories (with three, four, or five groups defined by tertiles, quartiles, 

and quintiles, respectively, of the risk scores in the discovery cohort) similar as Figure 2 (A)–

(D). (E) AUCs at five years were used to assess the prognostic accuracy of the integrated 

nomogram (combining the DeepPET-OPSCC score with clinical risk factors), clinical model, 

DeepPET-OPSCC score, and individual clinical risk factors (full description provided in 

Supplementary Protocol Section 5). HR, hazard ratio; HPV, human papillomaviruses; TCIA, 

The Cancer Imaging Archive; ROC, receiver operating characteristic; AUC, area under the curve. 

 

Figure 3. Examples of 3D PET images (consecutive image slices), corresponding activation 

maps (heatmaps), and two enlarged images with heatmaps for better visual observation.  
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In this illustrative example, auto-segmented tumors and lymph node boundaries are indicated by 

red and green curves, respectively. The PET images are anonymized by blocking the eye region 

with black boxes.  
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Table 1. Clinical characteristics in the discovery, TCIA test, and clinical deployment test cohorts 

Characteristic Discovery cohort (n=268) TCIA test cohort 

(n=353) 

TCIA test cohort with known 

HPV status (n=155) 

Clinical deployment test 

cohort (n=31) 

Age, years 53 (47–60) 61 (54–67) 61 (55–65) 59 (55–65) 

Age, years     

   <55 154 (58%) 99 (28%) 39 (25%) 8 (26%) 

   ≥55 114 (43%) 254 (72%) 116 (75%) 23 (74%) 

Sex     

   Female 22 (8%) 75 (21%) 30 (19%) 8 (26%) 

   Male 246 (92%) 278 (79%) 125 (81%) 23 (74%) 

HPV status     

   + 57 (21%) 108 (31%) 108 (70%) 0 

   – 211 (79%) 47 (13%) 47 (30%) 1 (3%) 

   Missing 0 198 (56%) 0 30 (97%) 

cT stage (AJCC seventh edition)     

   cT1 14 (5%) 54 (15%) 26 (17%) 5 (16%) 

   cT2 85 (32%) 149 (42%) 63 (41%) 9 (29%) 

   cT3  55 (21%) 87 (25%) 38 (25%) 1 (3%) 

   cT4a 79 (30%) 51 (14%) 21 (14%) 12 (39%) 

   cT4b 35 (13%) 7 (2%) 3 (2%) 2 (6%) 

   cT4 (substage missing) 0 5 (1%) 4 (3%) 2 (6%) 

cN stage (AJCC seventh edition)     

   cN0 57 (21%) 50 (14%) 23 (15%) 10 (32%) 

   cN1 25 (9%) 35 (10%) 17 (11%) 6 (19%) 

   cN2 168 (63%) 247 (70%) 108 (70%) 12 (39%) 

   cN3 18 (7%) 21 (6%) 7 (5%) 3 (10%) 

cTNM stage (AJCC seventh edition)     

   I 4 (2%) 6 (2%) 5 (3%) 3 (10%) 

   II 23 (9%) 23 (7%) 10 (7%) 2 (6%) 

   III 32 (12%) 48 (14%) 20 (13%) 3 (10%) 

   IVA 163 (61%) 244 (69%) 108 (70%) 19 (61%) 

   IVB 46 (17%) 28 (8%) 9 (6%) 4 (13%) 

   IV (missing substage) 0 4 (1%) 3 (2%) 0 

Primary treatment     

   Surgery 10 (4%) 14 (3%) 5 (3%) 24 (77%) 

   Radiotherapy 258 (96%) 339 (97%) 150 (97%) 7 (23%) 

Chemotherapy     

   Yes 252 (94%) 255 (72%) 104 (67%) 25 (81%) 

   No 16 (6%) 98 (28%) 51 (33%) 6 (19%) 

Follow-up time, years 2.8 (1.5–5.6) 4.3 (2.9–6.6) 3.9 (2.8–5.5) 2.3 (1.3–2.8) 

Event     

   Death 127 (53%) 70 (20%) 27 (17%) 15 (48%) 

Overall survival rate  

(95% CI) 

    

   2 years 67.4% (62.0–73.3) 91.4% (88.6–94.4) 91.6% (87.3–96.1) 63.6% (48.5–83.4) 

   5 years 50.0% (44.0–56.8) 79.9% (75.2–84.9) 79.0% (71.1–87.7) 44.8% (28.2–71.2) 

Note: Data are expressed as medians (interquartile ranges) or counts (percentages) unless otherwise specified.  

TCIA, The Cancer Imaging Archive; HPV, human papillomavirus; AJCC, American Joint Committee on Cancer; CI, confidence interval. 
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Table 2. Multivariable Cox regression analysis of overall survival in the discovery, TCIA test, and entire (with 

known HPV status) cohorts 

Variable Discovery cohort (n=268, 

events=127) 
TCIA test cohort (n=348, 

events=70) 
Entire cohort with known HPV 

status (n=419, events=153) 

 HR (95% CI) P HR (95% CI) P HR (95% CI) P 
DeepPET-OPSCC risk category       

   Low risk  Reference .. Reference .. Reference .. 

   High risk 2.07 (1.31–3.28) 0.002 2.39 (1.38–4.16) 0.002 2.24 (1.50–3.39) <0.001 

Age, years       

   <55 Reference .. Reference .. Reference .. 

   ≥55 0.95 (0.65–1.40) 0.804 2.21 (1.18–4.11) 0.013 0.86 (0.61–1.21) 0.388 

Sex       

   Female Reference .. Reference .. Reference .. 

   Male 1.38 (0.54–3.52) 0.506 1.96 (0.91–4.19) 0.084 1.37 (0.65–2.89) 0.408 

HPV       

   –  Reference .. .. .. Reference .. 

   + 0.19 (0.09–0.41) <0.001 .. .. 0.24 (0.14–0.41) <0.001 

cT stage .. 0.012 .. 0.019 .. 0.003 

   cT1    0.88 (0.24–3.15) 0.839 0.54 (0.21–1.35) 0.185 1.18 (0.48–2.96) 0.714 

   cT2 Reference .. Reference .. Reference .. 

   cT3  1.75 (0.91–3.52) 0.093 1.61 (0.81–3.18) 0.171 2.05 (1.17–3.60) 0.012 

   cT4a 2.96 (1.53–5.73) 0.001 3.43 (1.42–8.29) 0.006 3.27 (1.82–5.88) <0.001 

   cT4b 2.09 (0.96–4.53) 0.064 3.54 (0.98–12.76) 0.054 2.70 (1.34–5.44) 0.005 

cN stage .. <0.001 .. 0.006 .. 0.004 

   cN0 Reference .. Reference .. Reference .. 

   cN1 2.41 (1.12–5.22) 0.025 1.60 (0.61–4.20) 0.341 2.18 (1.10–4.33) 0.026 

   cN2 2.41 (1.38–4.20) 0.002 1.08 (0.50–2.31) 0.851 2.29 (1.37–3.82) 0.002 

   cN3 4.96 (2.28–10.80) <0.001 4.27 (1.51–12.08) 0.006 3.36 (1.63–6.90) 0.001 

SUVmax
a       

   <14.65 Reference .. Reference .. Reference .. 

   ≥14.65 0.60 (0.40–0.88) 0.010 1.50 (0.85–2.65) 0.163 0.75 (0.53–1.07) 0.113 

MTVa       

   <22.66 cm3 Reference .. Reference .. Reference .. 

   ≥22.66 cm3 1.18 (0.72–1.95) 0.509 0.40 (0.19–0.83) 0.014 0.88 (0.56–1.37) 0.571 

Chemotherapy       

   No Reference  Reference    

   Yes 0.50 (0.23-1.09) 0.080 0.45 (0.26-0.80) 0.006 0.76 (0.48-1.21) 0.245 

TCIA, The Cancer Imaging Archive; HPV, human papillomavirus; SUVmax, maximum standardized uptake value; MTV, metabolic tumor volume. 
a Cutoff threshold was the median value in the discovery cohort. 
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Table 3. Harrell’s concordance index (c-index), hazard ratio (HR), and area under the curve (AUC) at 5 years, all 

with 95% confidence intervals (CIs), of different deep learning and radiomics approaches evaluated on the discovery 

and TCIA test cohorts 

Methods Discovery cohort (n=268) TCIA test cohort (n=353) 

 c-index HR P  5yr AUC c-index HR P 5yr AUC 

DeepPET-OPSCC 0.707 

(0.658-0.757) 

3.17 

(2.18-4.63) 

<0.001 0.728 

(0.677-0.777) 

0.689 

(0.621-0.757) 

3.15 

(1.97-5.05) 

<0.001 0.669 

(0.600-0.743) 

DeepPET-OPSCC-T 0.702 

(0.652-0.752) 

3.07 

(2.11-4.46) 

<0.001 0.723 

(0.670-0.774) 

0.672 

(0.604-0.739) 

2.89 

(1.81-4.63) 

<0.001 0.682 

(0.623-0.743) 

DeepPET-OPSCC-TN 0.682 

(0.632-0.733) 

2.82 

(1.95-4.09) 

<0.001 0.705 

(0.663-0.754) 

0.692 

(0.625-0.760) 

2.71 

(1.68-4.35) 

<0.001 0.664 

(0.595-0.738) 

3D ResNet-OPSCC 0.646 

(0.595-0.697) 

1.95 

(1.36-2.79) 

<0.001 0.638 

(0.584-0.699) 

0.665 

(0.599-0.731) 

1.68 

(1.05-2.69) 

0.031 0.662 

(0.604-0.719) 

3D ResNet-OPSCC-T 0.633 

(0.583-0.683) 

1.87 

(1.31-2.68) 

<0.001 0.612 

(0.547-0.674) 

0.676 

(0.616-0.736) 

1.98 

(1.24-3.17) 

0.005 0.656 

(0.598-0.715) 

3D ResNet-OPSCC-TN 0.627 

(0.575-0.678) 

1.88 

(1.32-2.69) 

<0.001 0.623 

(0.566-0.677) 

0.657 

(0.591-0.724) 

2.10 

(1.30-3.38) 

0.002 0.661 

(0.602-0.719) 

2D DeepPET-OPSCC 0.605 

(0.552-0.658) 

1.92 

(1.35-2.73) 

<0.001 0.600 

(0.542-0.657) 

0.591 

(0.519-0.663) 

1.61 

(1.00-2.60) 

0.051 0.550 

(0.478-0.621) 

2D DeepPET-OPSCC-T 0.616 

(0.564-0.668) 

2.01 

(1.41-2.88) 

<0.001 0.621 

(0.566-0.678) 

0.572 

(0.498-0.647) 

1.37 

(0.84-2.22) 

0.21 0.541 

(0.469-0.615) 

2D DeepPET-OPSCC-TN 0.586 

(0.533-0.638) 

1.49 

(1.05-2.12) 

0.026 0.575 

(0.520-0.631) 

0.596 

(0.526-0.667) 

1.77 

(1.08-2.89) 

0.024 0.563 

(0.501-0.629) 

Radiomics signature 0.621 

(0.570-0.672) 

1.85 

(1.30-2.65) 

<0.001 0.619 

(0.560-0.676) 

0.608 

(0.538-0.677) 

1.81 

(1.13-2.90) 

0.014 0.564 

(0.488-0.642) 

-T, prognosis model uses SUV map/image and tumor mask as input; -TN=prognosis model uses SUV map/image, tumor mask, and nodes-to-

tumor (N-T) distance map as input; TCIA, The Cancer Imaging Archive. 
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3 
The Protocol 

Evaluation of a deep learning model for automated prediction of overall survival 

in patients with oropharyngeal cancer from pretreatment 18F-fluorodeoxyglucose 

positron emission tomography imaging 

 

1 Discovery cohort 

We formed the discovery cohort as an initial single-center dataset with 273 histologically confirmed non-

metastatic (M0) oropharyngeal squamous cell carcinoma (OPSCC) patients treated between June 2006 

and December 2017, at the Linkou Chang Gung Memorial Hospital (CGMH), Taiwan, ROC. FDG 

PET/CT images were acquired using GE or Siemens scanners (Protocol Table 1), within a median of 9 

(3–14) days from the pathological diagnosis. The conversions from PET to standardized uptake value 

(SUV) map were performed using the Chang-Gung Image Texture Analysis (CGITA) toolbox 

(https://code.google.com/archive/p/cgita/)1 and were saved in NifTI format (https://nifti.nimh.nih.gov/). 

For development and validation of segmentation models, 273 patients were used. For prognosis: one 

patient was excluded from the study as the lymph node (stage = N3) was resected before PET imaging; 

four patients were excluded, as the automated segmentation model identified no tumor in their SUV 

images – the remaining 268 patients comprised the CGMH discovery cohort (Protocol Fig. 1). Human 

papillomavirus (HPV) status was assessed by a pathologist (LYL) blinded to the clinical data on the p16 

staining of biopsy sections. Patients were staged and treated based on the 7th edition TNM staging system.  

Protocol Table 1. PET scanner characteristics of the discovery, TCIA test, and clinical deployment 

test cohorts  

 Discovery 

cohort 

TCIA test cohort Clinical deployment test cohort 

Institutions CGMH HN-PET-CT: 

HGJ 

HN-PET-CT: 

CHUS 

HN-PET-CT: 

HMR 

HN-PET-CT: 

CHUM 

HNSCC Head-Neck-

Radiomics-HN1 

ZJU1 NFH 

Patient (n) 268 54 72 18 53 121 35 22 10 

PET scanners 

  GE 

    Discovery ST 

Discovery STE 

Discovery RX 

Discovery HR 

Discovery LS 

    Unknown 

  Philips 

    Guardian Body(C) 

  Siemens 

Biograph40  

Biograph40 mCT 

Biograph64 mCT 

Biograph128 mCT 

Definition AS 

    CPS 1080 

CERR 

1080 

 

  149 (56%) 

146 (55%) 

3 (1%) 

- 

- 

- 

- 

  - 

- 

  119 (44%) 

42 (16%) 

74 (28%) 

1 (0.3%) 

- 

2 (1%) 

- 

- 

- 

 

  54 (100%) 

54 (100%) 

- 

- 

- 

- 

- 

  - 

- 

  - 

- 

- 

- 

- 

- 

- 

- 

- 

 

  - 

- 

- 

- 

- 

- 

- 

  72 (100%) 

72 (100%) 

  - 

- 

- 

- 

- 

- 

- 

- 

- 

 

  18 (100%) 

- 

17 (94%) 

- 

- 

- 

1 (6%) 

  - 

- 

  - 

- 

- 

- 

- 

- 

- 

- 

- 

 

  15 (28%) 

14 (26%) 

1 (2%) 

- 

- 

- 

- 

  38 (72%) 

38 (72%) 

  - 

- 

- 

- 

- 

- 

- 

- 

- 

 

  120 (99%) 

32 (26%) 

39 (32%) 

41 (34%) 

8 (7%) 

- 

- 

  - 

- 

  1 (1%) 

- 

- 

- 

- 

- 

1 (1%) 

- 

- 

 

  - 

- 

- 

- 

- 

- 

- 

  - 

- 

  35 (100%) 

- 

- 

- 

- 

- 

- 

35 (100%) 

- 

 

- 

- 

- 

- 

- 

- 

- 

  - 

- 

  22 (100%) 

- 

- 

- 

- 

- 

- 

- 

22 (100%) 

 

  2 (20%) 

- 

- 

- 

- 

2 (20%) 

- 

  - 

- 

  8 (80%) 

- 

- 

- 

8 (80%) 

- 

- 

- 

- 

Voxel spacing (mm) 

  Median [IQR]   

  Range 

 

4.69 [3.13, 4.69] 

3.13-5.47 

 

3.52 [3.52, 3.52] 

3.52-4.69 

 

4.0 [4.0, 4.0] 

4.0-4.0 

 

3.52 [3.52, 3.52] 

3.52-5.47 

 

4.0 [4.0, 4.0] 

3.52-5.47 

 

5.47 [5.47, 5.47] 

3.91-5.47 

 

2.67 [2.67, 2.67] 

2.67-2.67 

 

4.06 [4.06, 4.06] 

4.06-4.06 

 

4.07 [4.07, 4.07] 

3.91-4.07 

Slice thickness (mm) 

  Median [IQR]   

  Range 

 

3.27 [2.03, 3.27] 

2.0-3.27 

 

3.27 [3.27, 3.27] 

3.27-3.27 

 

4.0 [4.0, 4.0] 

4.0-4.0 

 

3.27 [3.27, 3.27] 

3.27-3.27 

 

4.0 [3.27, 4.0] 

3.27-4.0 

 

3.27 [3.27, 3.27] 

2.00-3.27 

 

3.0 [3.0, 3.2] 

3.0-3.0 

 

5.0 [5.0, 5.0] 

5.0-5.0 

 

3.0 [3.0, 3.0] 

3.0-4.25 

TCIA=The Cancer Imaging Archive. CGMH=Chang Gung Memorial Hospital. HGJ=Hôpital Général Juif. CHUS=Centre 
Hospitalier Universitaire de Sherbrooke. HMR=Hôpital Maisonneuve-Rosemont. CHUM=Centre Hospitalier de l'Université de 

Montréal. HNSCC=University of Texas MD Anderson Cancer Center. Head-Neck-Radiomics-HN1=MAASTRO Clinic. 

ZJU1=First Affiliated Hospital of Zhejiang University. NFH=Nanfang Hospital.  

 

According to the treatment policy of our institute, OPSCC patients were treated with platinum-based 

concurrent chemoradiotherapy (CCRT). Patients who participated in the open-label, prospective clinical 

trial to assess the survival benefits of induction chemotherapy on advanced stage OPSCC, received 

induction chemotherapy followed by platinum-based CCRT (IC + CCRT). Patients were followed-up for 

at least 36 months or until death. All patients received radiation therapy with an intensity-modulated 

technique and completed FDG PET staging before therapy. 

Two hundred and one patients (75%) underwent CCRT: 187 patients received chemotherapy with 

cisplatin (50 mg/m2 of body surface area, day 1), tegafur (200 mg/capsule, 1# qid on days 1–14), and  

https://code.google.com/archive/p/cgita/
https://nifti.nimh.nih.gov/
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Protocol Fig. 1 A diagram specifying inclusion and exclusion information for patients and PET images 

from the discovery cohort. HPV=human papillomavirus. 

 

leucovorin (15 mg/capsule 1# qid on days 1–14) biweekly; 12 received cisplatin (40 mg/m2) weekly; two 

with cisplatin (100 mg/m2) triweekly. IC + CCRT was administered to 44 patients (16.4%). Thirty cases 

completed IC of cisplatin (50 mg/m2 on day 1), tegafur (200 mg/capsule, 1# qid on days 1–14), and 

leucovorin (15 mg/capsule 1# qid on days 1–14) biweekly for 4 cycles and continued this regimen during 

radiotherapy. Fourteen patients received taxotere (75 mg/m2, day 1), cisplatin (75 mg/m2, day 1), and 5-

fluorouracil (750 mg/m2 on days 1–5) triweekly for 3 cycles, followed by cisplatin (40 mg/m2, weekly) 

during radiotherapy. Three patients with an early stage (one T1N0 and two T2N0 cases) received surgery 

only. Although different treatment modalities were utilized, intensive radiotherapies (median radiation 

dose: 72 Gy, range: 66–80 Gy; 2 Gy per day, 5 days per week) were performed for the rest 265 (99%) 

patients. 

 

2 Segmentation  

The segmentation method is built upon a state-of-the-art medical image segmentation backbone nnUNet2, 

augmented using extensive data augmentation. The nnUNet is recognized for its high performance on 

several medical image segmentation tasks, especially tumor segmentation.2,3 Extensive data 

augmentation is known to help networks maintain a high level of classification/segmentation accuracies 

when applied to unseen data.4,5 The trained augmented nnUNet model can then robustly produce 3D 

masks of the primary tumor and the lymph nodes, given an input SUV image. 

 

2.1. Training Images and Annotations 

Ground truth tumor and lymph node segmentation masks were first generated for 168 patients in the 

CGMH discovery cohort (by NMC, a nuclear radiologist with 14 years of experience in nuclear imaging 

and image processing). Specifically, the PET images were converted to SUV maps – with the SUV value 

of 2.5 defined as the threshold in delineating tumors – using the CGITA toolbox 

(https://code.google.com/archive/p/cgita/)1. Lymph nodes in the SUV maps were delineated using ITK-

SNAP (www.itksnap.org)6. To ensure consistency of masks with the true clinical data, the radiologist 

(NMC) carefully reviewed all corresponding CT images, radiology, and pathology reports to guide the 

manual delineation task. Next, to facilitate/accelerate the manual annotation of the remaining 

unannotated 105 patients, a nnUNet ensemble model – composed of five models trained from five-fold 

cross-validation on the 168 annotated patients – was applied to SUV images of the 105 remaining patients. 

The resulting tumor and lymph node auto-segmentations were checked (by NMC) by referring to their 

https://code.google.com/archive/p/cgita/
http://www.itksnap.org/
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corresponding CT images and reports if necessary. Inaccurate, false positive, and false negative 

segmentations were edited and corrected using ITK-SNAP. The 273 SUV images with (both manual and 

corrected) annotations/masks were used as the developing set of the automated segmentation model.  

 

2.2. Training, Validation, and Test Sets Splitting 

The final automated segmentation models were trained using nested five-fold cross-validation (Protocol 

Fig. 2) on the 273 patients with annotations described above. The following scheme was adopted for each 

of the five folds. 20% of the data was used as the test set and the remaining 80% as the training data. We 

ensured that there was no overlap between the test sets across folds. Of the training data, 80% was used 

for the optimization of network parameters (as a training set), and the remaining 20% for model selection 

(as a validation set). The final model, selected based on performance on the validation set, was then 

evaluated on the test set in the corresponding fold. After repeating the process five times, the testing 

results were generated for the full dataset. Due to this subdivision of the data into training, validation, 

and test splits in each fold, nested cross-validation can overcome the tendency of standard cross-

validation to generate over-optimistic estimates, as the automated segmentation of every PET volume 

was obtained in the test sets. Note that the current data splitting scheme was identical to that in the 

prognosis experiments (Protocol section 3), where the distributions of events in the training and 

validation sets were similar in each fold. 

 

Protocol Fig. 2 A diagram showing the nested five-fold cross-validation used in this study. 

 

2.3. nnUNet 

nnUNet is a self-configuring method for deep learning-based medical image segmentation, including 2D 

and 3D versions of UNet architectures.2 Since 3D spatial semantics are crucial to predicting the full tumor 

and lymph node segmentation masks, a 3D UNet, trained on pairs of volumetric image patches (input: 

cropped ROI with a size of 192×80×96 [Z×Y×X] voxels) and corresponding segmentation masks (output: 

ROI with a same size of 192×80×96 voxels) at full resolution, is used as the network architecture 

(Protocol Fig. 3). These ROIs are cropped to the region of nonzero values with consideration of the GPU 

memory constraints. To properly learn the 3D spatial semantics, all SUV volumes are first resampled to 

the median voxel spacing (3.27×4.69×4.69 mm) of the developing dataset, using third-order spline 

interpolation for images and nearest-neighbor interpolation for segmentation masks. Next, to increase 

the robustness to variations in SUV intensity among different patients, image intensities for each patient 

are normalized using a z-score normalization method based on the mean and standard deviation of 

intensity values for the patient individually. The convolutional kernel size is 3×3×3. A combination of 

Dice and cross-entropy loss is utilized.2 The loss function is calculated between the softmax output of 

the final feature map and the ground truth segmentation mask, in which the labels of background, tumor, 

and lymph node voxels are 0, 1, and 2, respectively. 

For nnUNet training, most parameters are set to be default values. We find that increasing the batch size 

(setting as 2) or changing the optimizer from default Adam7 to most recent RAdam8 does not significantly 

affect performance, and thus use the Adam optimizer. The models are trained to optimize the average 
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loss of the primary tumor and lymph nodes. The models are trained with 200 epochs, with 250 training 

batches per epoch. Each training process takes one day on a NVIDIA Titan RTX-6000 GPU. The model 

that produces the best average Dice score of the primary tumor and lymph nodes on the validation set is 

selected as the best segmentation model.  

In the testing phase, a sliding window of overlapping (by patch size / 2) volumetric image patches/ROIs 

(with size of 192×80×96 voxels) is applied to the whole 3D volume. In addition, testing-time data 

augmentation, i.e., flipping of all image patches along three axes, is used to further increase the model’s 

robustness. All final predictions are aggregated to produce the final segmentations for each voxel. 

 

Protocol Fig. 3 The 3D segmentation network architecture for automated tumor and lymph node 

segmentation in PET. Yellow boxes represent the 4D feature maps. The network processes the 3D input 

image (top-left) and outputs the tumor and lymph node segmentation masks (top-right). 

 

2.4. Data Augmentation 

One major obstacle to introducing deep learning models into clinical practice is their poor generalizability 

to unseen domains, such as different scanner vendors, hospitals, populations, etc9,10. For deep learning 

based predictive biomarkers in particular, it is usually difficult to obtain a large variety of imaging data 

and clinical outcomes to train highly generalizable models. Furthermore, it is infeasible to collect data 

from the target domain (e.g., every new hospital or vendor) to implement transfer learning or domain 

adaptation approaches to refine the trained models. Data augmentation is one of the most important 

techniques used to enhance the generalization performance of deep learning.4 Extensive data 

augmentation transformations have demonstrated promising generalization performance on unseen 

domains for image segmentation tasks.5 Specifically, for each 3D image patch randomly cropped during 

nnUNet training, a sequence of the following eight data augmentation transforms based on an open-

source implementation (batchgenerators; https://github.com/MIC-DKFZ/batchgenerators) is applied: 

deformation, rotation, scaling, sharpening, blurring, noise, brightness, and contrast. Each transform 

function is associated with two parameters: 1) the probability p to apply the function, set to 0.5, and 2) 

the magnitude m of the function, which is set as the default settings as in batchgenerators. 

 

2.5. Postprocessing  

The resulting segmentations are further processed through two steps. First, only segmentations in the 

head-and-neck region are retained. We empirically find that most head-and-neck PET images contain 91 

slices with a slice thickness of 3.27 mm in the z-direction, yielding a total of 298 mm sufficient to cover 

the entire head-and-neck region. Therefore, we use 300 mm starting from the uppermost slice as a 

distance cutoff. Next, volume cutoffs of the segmented tumor and lymph nodes are set. For the segmented 

tumor, we keep the largest connected component as a tumor to remove false positives. For the segmented 

lymph nodes, we remove segmentations (for both ground truth and auto-segmentations) with volume < 

500 mm3, since the RECIST 1.1 guidelines consider lymph nodes < 10 mm in the shortest diameter as 

normal12. We choose 500 mm3 as our cutoff size, as it more or less corresponds to the volume of a 3D 

spherical object equal to (4/3) × 𝞹 × 5×5×5 = 523 mm3. 

 

https://github.com/MIC-DKFZ/batchgenerators
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2.6. Evaluation  

Segmentation masks of tumors and lymph nodes are inputs to our deep learning-based prognosis models, 

that they may guide the extraction of deep features from the imaging data. We evaluate the segmentation 

accuracy using the Dice coefficients11, which is the standard metric used to evaluate segmentation 

performance.3 It measures the spatial overlap between the ground truth (GT) and automated segmentation 

masks (Seg) as 

𝐷𝑖𝑐𝑒 =
2|𝐺𝑇 ∩ 𝑆𝑒𝑔|

|𝐺𝑇| + |𝑆𝑒𝑔|
 

Results of tumor (Protocol Fig. 4 A, Protocol Table 2) and lymph node (Protocol Fig. 4 B, Protocol Table 

3) segmentation on the discovery test sets of the nested 5-fold cross-validation were median Dice 

coefficients of 0.84 (IQR 76–91) for tumors and 0.84 (70–91) for lymph nodes. The segmentation was 

more accurate for advanced than earlier cT and cN stages. It identified the tumor in 269 (99%) of 273 

cases in the discovery cohort, and its performance was comparable in the external TCIA and clinical 

deployment test cohorts, i.e., identify the tumor for 384 (97%) of 397 cases. Note that for calculations of 

lymph node Dice coefficients, we did not include patients who had a manually segmented lymph node < 

500 mm3, according to the RECIST 1.1 criteria mentioned in section 2.5. For patients in N0 stage, a false 

positive result was defined as the auto-segmented lymph node ≥ 500 mm3. 11 out of 58 (19.0%) patients 

in N0 stage were found to have false positive lymph node segmentations.  

A   Tumor                                                                                    B   Lymph node 

 

Protocol Fig. 4 Box plots show the agreement between the automated 3D segmentation and the 

radiologist-generated ground truth for tumor segmentation categorized by cT stages (A) and lymph nodes 

by cN stages (B). The values illustrated are Dice coefficients. The upper and lower edges of each box 

show the 25’th and 75’th percentiles. Whiskers above and below the boxes correspond to the 10’th and 

90’th percentiles, respectively, horizontal central lines to the median values, and dots to outliers.  

 

Protocol Table 2. Evaluation of tumor segmentation on 273 CGMH patients using nested 5-fold cross 

validation. Dice coefficients on the test sets are reported. 

Dice cT1 cT2 cT3 cT4 cT1-cT4  
Median (IQR) 0.74 (0.27-0.82) 0.81 (0.69-0.90) 0.83 (0.78-0.91) 0.85 (0.81-0.91) 0.84 (0.76-0.91) 

 

Protocol Table 3. Evaluation of lymph node segmentation on 273 CGMH patients using nested 5-fold 

cross validation. Dice coefficients on the test sets are reported. 

Dice cN1 cN2 cN3 cN1-cN3 
Median (IQR) 0.63 (0.06-0.84) 0.83 (0.71-0.91) 0.86 (0.83-0.91) 0.84 (0.70-0.91) 

 

For the outliers in Protocol Fig. 4 A for tumor segmentation, Dice scores of 0 are obtained for 7 out of 

273 PET scans of patients in cT1 and cT2 stages. Four of these cases (2 / 16 (12.5%) of cT1 stage and 2 

/ 89 (2.2%) of cT2 stage) are false negatives, whereby our automated segmentation model does not 

identify any voxels as the tumor. The other 3 (2 / 16 (12.5%) of the cT1 stage and 1 / 89 (1.1%) of the 

cT2 stage), are false positives, where our model identifies some voxels that do not overlap with the 

ground truth tumor regions. These cases are not especially concerning, as the FDG avid regions of the 

tumors were very small. In fact, it can even difficult for radiologists to identify such tumors based only 

on PET imaging without clinical and histopathological information. In the prognosis experiments, the 4 

false-negative cases are excluded since a tumor location is needed to perform the prognosis. For the 
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outliers in lymph node segmentation (Protocol Fig. 4 B), Dice scores of 0 are obtained in 15 cases (5 / 

25 (20.0%) of cN1 stage and 10 / 172 (5.8%) of cN2 stage), as our model does not identify any lymph 

node with volume larger than the cutoff size (500 mm3), thus yielding false negatives. Similar to the false 

negatives in tumor segmentation, some small lymph node lesions were difficult to identify partly due to 

the limited spatial resolution of PET images. The manual annotations for these cases usually require 

additional information from clinical, histopathological, CT or MRI imaging. Nevertheless, as shown in 

these quantitative results, our model produces higher Dice scores for patients in advanced T or N stages. 

Any patient can have an arbitrary number of lymph nodes. Reliable detection of lymph nodes is also 

important to prognosis, e.g., the definition of the N stage relies not only on the size but also on the number 

and distribution of lymph nodes. 390 lymph nodes were manually detected and/or annotated in 273 

patients. Lymph node detection performance was evaluated based on the number of true positives (TP), 

false negatives (FN), false positives (FP), the true positive rate (TPR), the positive predictive value (PPV), 

and the false positives per volume (Protocol Table 4). The Dice coefficient between the segmentation 

and ground truth is used as the criteria to define a TP detection. We define TPs, FNs, and FPs as follows: 

• TP: a lymph node is successfully detected if there is an auto-segmentation with Dice coefficient ≥ 

threshold with its ground truth. 

• FN: a lymph node is missed if there is no auto-segmentation with Dice coefficient ≥ threshold with 

its ground truth. 

• FP: a lymph node is incorrectly detected if there is no ground truth lymph node that has Dice 

coefficient ≥ threshold with an auto-segmentation. 

 

Protocol Table 4.  Evaluation of Lymph Node detection (n=390) on 273 CGMH patients using nested 

5-fold cross-validation. Results on the test sets are reported. 

TP criteria TP (n) FN (n) FP (n) TPR (%) PPV (%) FP per volume 
Dice ≥ 0.9 93 297 242 23.9 27.8 0.89 
Dice ≥ 0.8 183 207 152 46.9 54.6 0.56 
Dice ≥ 0.7 231 159 104 59.2 69.0 0.38 
Dice ≥ 0.6 258 132 77 66.2 77.0 0.28 
Dice ≥ 0.5 270 120 65 69.2 80.6 0.24 
Dice ≥ 0.4 276 114 57 70.8 82.9 0.21 
Dice ≥ 0.3 282 108 50 72.3 84.9 0.18 
Dice ≥ 0.2 286 104 45 73.3 86.4 0.16 
Dice ≥ 0.1 289 101 43 74.1 87.0 0.16 
Dice > 0.0 291 99 20 74.6 93.6 0.07 

 

For example, defining Dice coefficient ≥ 0.5 as a true positive of lymph node detection, the TPR and 

PPV were 69.2% and 80.6% at 0.24 FP per volume. 

 
3 Prognosis 

In this section, we describe the deep learning-based prognostic models that were developed for the 

prediction of OPSCC patients’ survival. The models were implemented with Python 2.7.0 

(https://www.python.org/) using Pytorch package version 1.4.0 (https://pytorch.org/). The CGMH 

discovery cohort was used to train, validate, and test the prognosis models (with the same nested five-

fold cross-validation in the segmentation model; Protocol Fig. 2). The multicenter TCIA and clinical 

deployment test cohorts were used for independent external testing and application of the model.  

We explicitly analyze both the primary tumor and involved lymph nodes by capturing not only their 

morphology and texture but also their location and distance information. Most previous studies focused 

exclusively on the primary tumor.13,14 Several recent studies have shown that specific imaging features 

or characteristics of the involved lymph nodes could be more strongly associated with patients’ outcomes 

than those derived from the primary tumor, especially on OPSCC patients with HPV+ disease.15,16 

However, those studies do not include a larger, multicenter validation of the imaging markers. 

Furthermore, they usually use 2D tumor slices and merely determine the maximum tumor occurrence in 

the image, in order to reduce the amount of computations required to extract hand-crafted features. Such 

an approach is limited, in that it could fail to fully capture the tumor’s heterogeneity and the complexity 

of its underlying biological processes. 
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Despite the growing clinical interest in deep learning-based methods,17–20 the limited sample size of 

cancer prognosis datasets (baseline imaging with follow-up outcomes) usually prevents deep neural 

networks from being adequately trained to generalize to unseen data effectively. Indeed, a recent study21 

in lung cancer outcome prediction had observed that when 60% (n≈400) of the training data were used 

for model training, deep learning underperformed even standard clinical risk factors, such as tumor 

volume. How to efficiently leverage a limited dataset to train a robust deep learning-based model still 

requires investigation in cancer prognosis tasks, including OPSCC.  

Most previous deep learning methods used classification-based loss functions and could only be trained 

using a small number of patients (with a distinct outcome at specific time points, e.g., 2 years) out of all 

available data. Longer or shorter outcomes had to be treated as the same risk level, respectively. In our 

study, inspired by our recent method for pancreatic cancer survival prediction22, we present a 3D 

convolutional neural network with a Cox proportional hazard assumptions (ConvCox) framework. Our 

ConvCox model, instead, is a regression network capable of leverage all available data to directly learn 

time-dependent events from the full tumor and lymph nodes in 3D. This is a highly desirable property 

for prognosis problems, where the number of patients with baseline imaging and outcomes, tends to be 

limited. We aim to maximize the generalization performance of the ConvCox network. To this end, we 

perform several preliminary experiments to optimize its architectural design and results. In particular, 

we evaluate several architectural modifications – such as skip connections, side supervision, and 

autoencoder reconstruction, and found that the proposed relatively shallower network architecture with 

optimized preprocessing (e.g., resampling and normalization), extensive data augmentation, and various 

training and inference strategies (namely nested cross-validation, model ensembling, and test-time 

augmentation respectively) produce the best generalization performance. In addition, we incorporate 

domain knowledge about cancer metastasis from the tumor to lymph nodes into the learning of ConvCox, 

further improving its robustness and generalizability. Since 3D ResNet with pretrained weights is deeper 

than our networks, the limited training data size can easily lead to overfitting. 

 

3.1. Training Images and Labels 

For each patient in the CGMH discovery cohort, three types of volumetric images (i.e., SUV, 

automatically segmented tumor mask, and nodes-to-tumor [N-T] distance map) related to metabolism 

uptake, tumor morphology, and clinical evidence were extracted, serving as inputs to the prognosis 

networks. We note that although the original SUV volumetric image could be used as the unique input, 

this could more likely induce overfitting of our network to irrelevant areas, due to the limited sample size 

of the 3D training dataset. The tumor mask was used as additional information, guiding the training 

process and granting the network the flexibility required to extract features mainly from the tumor regions 

(both inside and outside). For the N-T distance map, the underlying clinical evidence is that OPSCC 

patients with lower neck lymph node metastasis, i.e., farther cancer spread, are associated with increased 

risk of distant metastasis23 and reduced overall survival (OS).24,25 We explicitly represented the locations 

of all lymph node voxels by calculating the distance from each lymph node voxel to the nearest surface 

of the primary tumor. More specifically, the tumor mask was first converted to tumor mesh, which 

contained boundary points of the tumor. The mesh conversion process was done with VTK 8.2.0 

(https://vtk.org/Wiki/VTK/Examples/Python). Next, distances from lymph nodes voxels to their nearest 

tumor boundary points in the mesh were calculated using NVIDIA’s 3D deep learning open-source 

library Kaolin (https://github.com/NVIDIAGameWorks/kaolin).  

Each patient was associated with two outcome labels, i.e., OS time and status (death or censor). The OS 

time was defined as the time from cancer diagnosis to the last follow-up or death from any cause. 

 

3.2. 3D Convolutional Cox Model 

The DeepPET-OPSCC prognosis model is trained to produce risk scores from input SUV images. The 

model is based on 3D ConvCox, which can generate imaging signature for survival outcome prediction 

from 3D imaging of the full tumor and all lymph nodes.  

 

3.2.1. Sub-volume Extraction 

When designing a 3D network, the amount of GPU memory available is the main hardware constraint. 

Since most of the GPU memory is usually occupied by feature map activations (as they need to be stored 

https://vtk.org/Wiki/VTK/Examples/Python
https://github.com/NVIDIAGameWorks/kaolin
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for the backward pass), we address this issue by cropping the input sub-volumes of interest, that contain 

the entire tumor and relevant lymph nodes. Given that the maximum distance from the lymph nodes to 

the primary tumor is about 120 mm in our discovery cohort, the sub-volume size of 64×64×96 voxels 

(after resampling the original image resolution to 2×2×2 mm3) could cover the full region of the tumor 

and lymph nodes for almost all patients. The SUV values are cut by a window of [0 26] and then 

normalized to [0 1] (by dividing all remaining values by 26). 

 

3.2.2. Two Models: DeepPET-OPSCC-T and DeepPET-OPSCC-TN  

Given that there is more variability in the appearance image (N-T distance map) than the binary image 

(tumor mask), the deep learning model may not capture adequate information in the tumor mask. To 

allocate sufficient network capacity to learn both tumor and lymph nodes information, we train two 

models separately: 1) DeepPET-OPSCC-T, which takes two-channels of input (SUV and tumor mask), 

and 2) DeepPET-OPSCC-TN, which takes three-channels of input (SUV, tumor mask, and T-N distance 

map) (Protocol Fig. 5). The tumor and lymph node masks used as network inputs are the automated 

segmentation instead of the manual segmentation masks, as our preliminary experiments show that the 

former yield slightly better results. This may be due to the fact that the network yields better predictions 

based on masks it has created in the past, as it is most familiar with its own segmentation style.  

 

Protocol Fig. 5 The architecture, input, and output of the 3D ConvCox network in the DeepPET-OPSCC-

T/-TN prognosis model. 

 

3.2.3. Network Architecture 

Both DeepPET-OPSCC-T and -TN models were implemented using the same 3D ConvCox network. 

The ConvCox network has 6 convolutional layers with filter size 3×3×3 and stride 1. Each convolutional 

layer is followed by a batch normalization layer and a rectified linear units (ReLUs) nonlinearity 

activation function. In the first layer, there are 16 filters; the filter size is doubled every two layers. Max-

pooling operations with a pooling size of 2×2×2 are adopted after the second and fourth convolutional 

layers. The last convolutional layer is followed by one global average pooling layer that reduces feature 

maps to single channel-wise features. This reduces the feature dimension from 64×64×96 (input) to 64 

(latent space). Afterward, a fully connected layer is used to obtain outcome predictions based on the 

latent features. 

 

3.3. Training Procedure 

3.3.1. Data Augmentation in Training 

Deep neural networks tend to overfit, given a limited amount of training data. Various of data 

augmentation techniques were used on the fly to train the DeepPET-OPSCC network. At each training 

iteration, before being fed into the network, each 3D sub-volume undergoes several image 

transformations, including: 

• All input sub-volumes are randomly cropped to the required size (64×64×96) but must contain 

the full tumor and all lymph nodes.  

• Next, the selected 3D sub-volume is randomly flipped from left to right around its axial plane 

with a probability of 50% and randomly rotated by either 0, 90, 180, or 270 degrees in the axial 

or horizontal plane.  
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• 50% of sub-volumes are augmented with image appearance and quality transformations, 

including contrast, sharpening, blurring, and noise. The magnitudes of these transformations 

are set to the same values as those mentioned in Protocol section 2.4.  

 

3.3.2. Loss Function 

The deep neural network with Cox proportional hazard assumptions (DeepCox)26 models nonlinear 

associations between covariates and outcomes and can handle censored data without the need for 

binarizing it at specific time points (e.g., at two years). Similar to the Cox model, no assumptions were 

made about the form of the baseline hazard function, which made DeepCox more generalizable to 

different applications in cancer outcome prediction. Let 𝑋𝑖 denotes the input 3D image of the i-th patient 

with death (or censoring) time 𝑡𝑖. The predicted risk 𝑜𝑖  of the i-th patient is generated when the input 

volume 𝑋𝑖 is processed by the 3D ConvCox. Let 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 denote the ordered event times and 

𝑅(𝑡𝑖) the risk set of all individuals who are still present in the study at time 𝑡𝑖 (𝑗 ∈ 𝑅(𝑡𝑖) and 𝑡𝑗 >=  𝑡𝑖). 

Assuming statistical independence of the patients, the loss function of the network is computed as a 

negative log partial likelihood of all samples in the training dataset: 

𝐿(𝑜𝑖) = ∑ δ𝑖 (−𝑜𝑖 + log ∑ exp(𝑜𝑗)

𝑗∈𝑅(𝑡𝑖) 

)

𝑖

. 

where 𝛿𝑖  = 1 if the i-th patient’s death event occurs and 𝛿𝑖  = 0 if the patient is censored. 

 

3.3.3. Model Training and Selection 

Ten models, five for DeepPET-OPSCC-T and five for DeepPET-OPSCC-TN, were trained using nested 

five-fold cross-validation (Protocol Fig. 2), where 64%, 16%, and 20% of the data were used as the 

training, validation, and test sets in each fold. Data splits in each fold were identical to those created to 

train the segmentation models; the distributions of events in the training and validation sets were similar 

in each fold. 𝐿2  regularization is applied to all network parameters, and the weight decay is set to 

1 × 10−5. The network was trained with a batch size of 8 sub-volumes, each with a size of 64×64×96 

voxels at a spacing of 2×2×2 mm. The Adam optimizer, with an initial learning rate of 1 × 10−3, is used. 

The learning rate is adjusted and reduced by a factor of 0.5 when the loss value in the validation set does 

not decrease for 20 epochs. The network was trained for 250 epochs, and the model with the highest 

Harrell’s concordance index (c-index)27 on the validation set in each fold was selected and saved as the 

best model. The c-index compared the observed time to death or censoring to a model’s predicted score 

of poor prognosis. Indeed, the model with the highest c-index on the validation set could potentially 

generalize to unseen domains substantially well. The training encounters early stopping when no 

validation loss decreases after 160 epochs. Note that we checked the model’s performance on the 

validation set every 10 epochs starting from the 40th epoch (~80 000 iterations). Protocol Fig. 6 and Fig. 

7 show performances results at different training epochs across different nested cross-validation folds 

(folds 1, 2, 3, 4, and 5) for DeepPET-OPSCC-T and DeepPET-OPSCC-TN, respectively. 

The network output was the predicted probability of poor prognosis for the input 3D volumes. The 

probability was normalized to [0,1], as we used the sigmoid activation function in the last output layer. 

 

3.4. Inference 

The best DeepPET-OPSCC-T and DeepPET-OPSCC-TN models selected above were applied to perform 

inference (i.e., prediction of survival). For the CGMH discovery cohort, individual models were applied 

to the test sets in the nested cross-validation setting – each patient’s risk score was obtained by averaging 

results of one DeepPET-OPSCC-T model and the corresponding DeepPET-OPSCC-TN model from the 

same fold. Note that the test sets ensure that the predictions were performed in an independent testing 

scenario. For the TCIA and clinical deployment test cohorts, an ensemble model consisting of all ten 

models was applied.  
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Protocol Fig. 6 C-index of tumor only models (i.e., DeepPET-OPSCC-T) on the five validation sets in 

the nested cross-validation process. Subplots A-E show training and validation results on folds 1 to 5. 

 

3.4.1. Data Augmentation in Testing 

For robust and stable prediction, we performed testing-time augmentation by shifting the cropped 3D 

volumes by up to 5 voxels in the x, y, or z directions ten times. The original volume focused on the head 

and neck region. After undergoing such augmentation, 10 ROI volumes are shifted around the center and 

then cropped for testing. This testing-time augmentation scheme was applied to the validation and test 

sets in the CGMH discovery cohort, and also the TCIA and clinical deployment test cohorts. 
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Protocol Fig. 7 C-index of tumor with lymph nodes models (i.e., DeepPET-OPSCC-TN) on the five 

validation sets in the nested cross-validation process. Subplots A-E show training and validation results 

on folds 1 to 5. 

 

3.4.2. Individual models 

When applying each model to a new patient, the predicted score is individualized/normalized by 

subtracting the mean risk scores of all training patients, 𝑂𝑛
𝑖 (𝑥) = 𝑂𝛽

𝑖 (𝑥) − 𝑂𝑟𝑖𝑠𝑘
𝑖 , i = 1, 2, ... , 5 for model 

i, where 𝑂𝑛(𝑥) is the normalized score, 𝑂𝛽(𝑥) is the output of the DeepPET-OPSCC-(T/TN) model, and 

𝑂𝑟𝑖𝑠𝑘  is the mean risk scores of all training patients in fold i. The 𝑂𝑟𝑖𝑠𝑘  of the -T models (1st  through 5th) 

are 0.308, 0.287, 0.290, 0.277, and 0.266 and of the -TN models (1st  through 5th) are 0.491, 0.396, 0.266, 

0.369, and 0.3870, respectively. 

 

3.4.3. Ensemble models 

For prediction in the external TCIA and clinical deployment test cohorts, the five DeepPET-OPSCC-T 
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and five DeepPET-OPSCC-TN models were combined into an ensemble model. The five normalized 

prediction scores of each T/TN ensemble were used to obtain the final prediction score of the T and TN 

ensemble models. These two scores were then averaged to generate the final DeepPET-OPSCC score. 

This score was then binarized, using the median value of DeepPET-OPSCC scores in the discovery 
cohort’s test sets as a cutoff value to classify DeepPET-OPSCC scores of external test cohorts into high 

and low-risk patient groups. 

 

3.4.4. Visualization with Activation Mapping 

To generate visualization maps, we used an activation mapping method28 to map important regions in 

the volume with respect to predictions made. The last convolutional block before the global average 

pooling layer was set to produce activation heatmaps during backpropagation. The visualization maps 

were enlarged by resampling to match the input volume size (64×64×96). The value of each voxel in 

the heatmaps directly reflects the given voxel’s prediction risk score. This analysis allowed us to observe 

the most relevant regions, with the most impact on predictions, both within and beyond the primary tumor. 

To display the heatmaps (Fig. S13), we renormalized their values to [0,1] based on the max and min 

values from the corresponding training set. For better visualization, we transparently overlay the 

heatmaps on PET images with heatmap values lower than 0.1 not shown. We found that the -T model 

focused mostly on the tumor’s interior, while the -TN model tended to fixate on the interface between 

the tumor and the lymph nodes.  

 

3.5. Compared Methods 

3.5.1. 3D ResNet-OPSCC 

We built a 3D residual network for OPSCC (3D ResNet-OPSCC) as the comparison method. Though the 

classical 3D ResNet is widely used in 3D computer vision learning tasks, it will face training data scarcity 

issues when applied to the medical imaging field. Hence, we considered an effective lightweight 3D 

ResNet proposed for coronavirus disease 2019 (COVID-19) classification (DeCoVNet),29 as it could 

potentially be more effective than classical ResNet models on training datasets of limited size. We 

validated this hypothesis on our data in a preliminary experiment. The 3D ResNet-OPSCC has three 

stages: the network stem, ResBlocks, and the classifier. The first two stages used the same settings as 

DeCoVNet. The classifier is changed to that used in DeepPET-OPSCC. The loss function is adapted to 

the negative partial likelihood function instead of the cross-entropy loss for classification, and the same 

training procedures (data augmentation, model selection, -T and -TN ensemble model, etc.) used for 

DeepPET-OPSCC were performed for 3D ResNet-OPSCC. 

 

3.5.2. 2D DeepPET-OPSCC 

We investigated the performance of 2D DeepPET-OPSCC models by using 2D key slices from the 3D 

tumor volume. The largest primary tumor mask in the axial view is used to select each patient’s 2D slice. 

The 2D DeepPET-OPSCC-T model takes the SUV image with its corresponding tumor mask as inputs, 

while the -TN model takes the SUV image with its corresponding tumor mask and N-T distance map in 

the same 2D slice. The 2D DeepPET-OPSCC network’s parameters shared the same parameter settings 

in the 3D DeepPET-OPSCC network, except the convolutional and pooling operations used 2D kernels. 

We followed the same training procedures (data augmentation, model selection, -T and -TN ensemble 

model, etc.) as DeepPET-OPSCC. 

 

3.5.3. Radiomics Features Extraction and Signature Building 

We built two radiomics signatures reflecting the phenotypic characteristics of the primary tumor and the 

lymph nodes in SUV images, respectively, as independent predictors of OS. The 3D radiomics features 

were extracted from both the primary tumor and the lymph nodes. There are two sets of handcrafted 

radiomics features: 482 extracted for primary tumors and 482 for lymph nodes, all of which were 

extracted using an open-source Python package, Pyradiomics 

(https://pyradiomics.readthedocs.io/en/latest/).30  

Each set of 482 handcrafted features can be divided into four groups: 1) intensity, 2) geometry, 3) texture, 

and 4) wavelet features.  

https://pyradiomics.readthedocs.io/en/latest/
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• The intensity features quantified the first-order statistical distribution of the voxel intensities 

within the volumes of interest (tumor or lymph nodes). The statistical measurements include 

Energy, Entropy, etc. This group has 18 features in total (1st-18th). 

• The texture features measured the spatial distribution of the voxel intensities, thereby 

quantifying the intra-tumoral heterogeneity. There are 34 texture features in total (19th-52nd). 

• The geometry feature group contains features that quantified 3D shape characteristics of the 

tumor or lymph nodes. It is composed of 14 features in total (53rd to 66th). 

• Wavelet features were calculated by applying wavelet transformations to the original input 

images. There are 416 features in total (67th -482nd). 

To accommodate the especially large number of radiomics features and to prevent overfitting, feature 

selection was performed with nested five-fold cross-validation, as follows. First, univariable analysis was 

completed for each feature in the training set. Features with p-value < 0.1 were considered to be 

potentially associated with OS and thus were selected into the following process. The least absolute 

shrinkage and selection operator (LASSO) Cox regression method31 was then used to obtain the most 

useful prognostic features from candidate features. These selections were all performed in the training 

set. We evaluated the performance of all individual selected features using the c-index in the validation 

set and retained the best feature from each of the four groups (Protocol Table 5). These four chosen 

features were then introduced into a multivariable Cox model to predict OS. The radiomics signatures 

used in this study were calculated for each patient as a linear combination of selected features weighted 

by their respective coefficients. This building process was done for both the primary tumor and the lymph 

nodes, resulting in two signatures, the primary tumor and lymph nodes radiomics signatures, which were 

then averaged to generate the final radiomics marker. The performance on the discovery cohort was 

evaluated on the test sets. All other evaluation settings were the same as those used for DeepPET-OPSCC.  

Protocol Table 5. Results of radiomics feature selection for tumor and lymph nodes. 

 Tumor features Lymph nodes features 

1st Fold Firstorder_TotalEnergy Firstorder_Energy 

 GLRLM_GrayLevelNonUniformity GLRLM_GrayLevelNonUniformity 

 Shape_MeshVolume Shape_MajorAxisLength 
 Wavelet.HHH_glrlm_GrayLevelVariance Wavelet.HHH_glcm_Contrast 

2nd Fold Firstorder_Uniformity Firstorder_Minimum 

 GLCM_ClusterTendency GLCM_DifferenceEntropy 

 Shape_MinorAxisLength Shape_MajorAxisLength 

 Wavelet.HHH_firstorder_Kurtosis Wavelet.HHL_glcm_Imc2 

3rd Fold Firstorder_Maximum Firstorder_RootMeanSquared 

 GLCM_Correlation GLCM_JointAverage 
 Shape_Sphericity Shape_Maximum3DDiameter 

 HHH_firstorder_Maximum Wavelet.HHH_firstorder_InterquartileRange 

4th Fold Firstorder_Minimum Firstorder_Energy 
 GLCM_Autocorrelation GLCM_ClusterShade 

 Shape_LeastAxisLength Shape_Maximum2DDiameterColumn 

 Wavelet.HHH_firstorder_TotalEnergy Wavelet.HHL_glcm_Imc1 

5th Fold Firstorder_TotalEnergy Firstorder_Maximum 
 GLRLM_GrayLevelVariance GLCM_ClusterTendency 

 Shape_MeshVolume Shape_MajorAxisLength 

 Wavelet.HHH_glrlm_ShortRunLowGrayLevelEmphasis Wavelet.HHL_glcm_Imc2 

 

4 External TCIA and Clinical Deployment Test Cohorts 

4.1. TCIA Test Cohort 

Six external cohorts from six hospitals in North America and Europe (Canada, USA, and Netherlands) 

were used as the test cohort: the HN-PET-CT cohort (including four sub-cohorts), the HNSCC cohort, 

and the Head-Neck-Radiomics-HN1 cohort that are described in the following subsections. These data 

are publicly available on The Cancer Imaging Archive (TCIA). PET scans were obtained on 6 unseen 

different PET scanners from three manufacturers (Protocol Table 1). 

 

4.1.1. HN-PET-CT cohort  

The HN-PET-CT cohort included 298 patients with head-and-neck squamous cell carcinoma (HNSCC) 

treated between April 2006 and November 2014 at four separate institutions in Canada: Hôpital général 
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juif (HGJ), Centre hospitalier universitaire de Sherbrooke (CHUS), Hôpital Maisonneuve-Rosemont 

(HMR), and Centre hospitalier de l'Université de Montréal (CHUM).32 All patients underwent FDG-

PET/CT imaging scans within a median of 18 days (range: 6-66) before treatment. Ninety-seven patients 

were excluded from the study, due to location of tumors not in the oropharynx (95), unknown metastasis 

status (one), and erroneous radionuclide dose information (one) (Protocol Fig. 8). The remaining 201 

oropharyngeal cancer patients’ PET images were converted to standard uptake value (SUV) maps using 

a radiomics package (https://github.com/mvallieres/radiomics) provided by the HN-PET-CT cohort data 

provider, and the file formats were converted from DICOM to NifTI (https://nifti.nimh.nih.gov/). The 

automated segmentation model identified no tumor for four patients on the SUV images. The final 197 

included patients with segmentations of primary tumor and lymph nodes were defined as the HN-PET-

CT cohort. HPV status was available for 92 patients, among which 74 (80%) were HPV+ and 18 (20%) 

were HPV–. TNM staging for all patients were available, and no patient had distant metastases. Twenty-

eight patients received radiation alone (14%), 158 received chemoradiation (80%) with curative intent, 

and 11 (6%) received chemoradiation and surgery. Twenty-four patients (12%) died during the follow-

up period. Protocol Fig. 9 specifies the detailed inclusion and exclusion information for the four sub-

cohorts (HGJ, CHUS, HMR, and CHUM) in the HN-PET-CT cohort. 

 

Protocol Fig. 8 A diagram specifying inclusion and exclusion information for patients and PET images 

from the TCIA: HN-PET-CT cohort, and the HPV status and the number of events of the included 

patients. TCIA=The Cancer Imaging Archive (http://www.cancerimagingarchive.net/). HPV=human 

papillomavirus. 

 

4.1.2. HNSCC cohort  

The HNSCC cohort included 215 patients with HNSCC treated from October 2003 to August 2013 at 

the University of Texas MD Anderson Cancer Center in USA33. The majority of patients underwent 

PET/CT before and after treatment. Only PET imaging before treatment was considered in our prognosis 

study. The median time between initial diagnostic imaging and treatment planning was 0.87 months 

(interquartile range 0.37-2.27 months). Fifty-nine patients had tumors not in the oropharynx, 13 patients 

did not have PET imaging before treatment, 13 patients’ PET imaging did not contain head-and-neck 

region, and one patient’s lymph node (stage = N3) was resected before PET scanning. Hence, these 

patients could not be considered as pretreatment imaging. The PET-to-SUV image conversion of the 

remaining 129 oropharyngeal cancer patients was performed by using the radiomics package 

(https://github.com/mvallieres/radiomics) and converted to NifTI format (https://nifti.nimh.nih.gov/).  

However, the scanning time in the calculation of decay was changed to the series time instead of the 

default acquisition time, after double-checking the generated SUV images with the 3D Slicer 

PETDICOMExtension (https://www.slicer.org/wiki/Documentation/4.10/Extensions/PETDICOM). The  

https://github.com/mvallieres/radiomics
https://nifti.nimh.nih.gov/
http://www.cancerimagingarchive.net/
https://github.com/mvallieres/radiomics
https://nifti.nimh.nih.gov/
https://www.slicer.org/wiki/Documentation/4.10/Extensions/PETDICOM
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Protocol Fig. 9 Diagrams specifying inclusion and exclusion information for patients and PET images 

from the four sub-cohorts in TCIA: HN-PET-CT cohort. TCIA=The Cancer Imaging Archive 

(http://www.cancerimagingarchive.net/). HPV=human papillomavirus. 

 

automated segmentation model identified no tumor for eight patients on SUV images. The remaining 

121 patients comprised the HNSCC cohort (Protocol Fig. 10). HPV status was available for 32 patients, 

among which 23 (72%) were HPV+ and 9 (28%) were HPV–. Staging for all patients was assigned 

according to the AJCC 7th TNM staging system, and no patient had distant metastases. Treatment 

included RT, CCRT, IC, surgery, cetuximab, and various combinations of these. Thirty (25%) patients 

died during the follow-up period. 

 

4.1.3. Head-Neck-Radiomics-HN1 cohort  

The Head-Neck-Radiomics-HN1 cohort contained 137 HNSCC patients treated by radiotherapy at 

MAASTRO Clinic, in The Netherlands34. For these patients, PET/CT or CT scans before treatment were 

available. Forty-nine patients with tumors not in the oropharynx, and 53 with no PET imaging were  

http://www.cancerimagingarchive.net/
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Protocol Fig. 10 A diagram specifying inclusion and exclusion information for patients and PET images 

from the TCIA: HNSCC cohort. TCIA=The Cancer Imaging Archive 

(http://www.cancerimagingarchive.net/). HPV=human papillomavirus. 

 

excluded (Protocol Fig. 11), resulting in 36 oropharyngeal cancer patients with PET images, which were 

converted to SUV maps with NifTI (https://nifti.nimh.nih.gov/) format by the radiomics package 

(https://github.com/mvallieres/radiomics). Since the required patient body weight information was 

missing, we assumed that the weight of male patients was 84kg and that of female patients 70 kg 

according to the national statistical office, Statistics Netherlands (CBS) (https://www.cbs.nl/en-

gb/news/2012/49/dutch-population-taller-and-heavier). The automated segmentation model identified no  

 

Protocol Fig. 11 A diagram specifying inclusion and exclusion for patients and PET images from the 

TCIA: Head-Neck-Radiomics-HN1cohort. TCIA=The Cancer Imaging Archive 

(http://www.cancerimagingarchive.net/). HPV=human papillomavirus. 

http://www.cancerimagingarchive.net/
https://nifti.nimh.nih.gov/
https://github.com/mvallieres/radiomics
https://www.cbs.nl/en-gb/news/2012/49/dutch-population-taller-and-heavier
https://www.cbs.nl/en-gb/news/2012/49/dutch-population-taller-and-heavier
http://www.cancerimagingarchive.net/
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tumor for one patient on SUV images. The remaining 35 included patients with the segmentation of the 

primary tumor and lymph nodes were defined as the Head-Neck-Radiomics-HN1 cohort. HPV status 

was available for 31 patients, with 11 (35%) HPV+ and 20 (65%) HPV–. TNM staging for all patients 

were available, and no patient had distant metastases. 16 (46%) patients died during the follow-up period. 

 

4.2. Clinical Deployment Test Cohort 

Two external cohorts from two hospitals in Asia (China) were used as the clinical deployment test cohort: 

the First Affiliated Hospital of Zhejiang University (ZJU1) and the Nanfang Hospital (NFH) cohorts. 

PET scans were obtained on 3 unseen different PET scanners from two manufacturers (Protocol Table 

1). This cohort was used to test our automated DeepPET-OPSCC assay in the clinical environment (i.e., 

deployed the model and software in the First Affiliated Hospital of Zhejiang University, as detailed in 

Protocol Section 6). The investigators only needed to assign the PET DICOM data to the software, which 

will perform SUV conversion, segmentation, and prognosis automatically. 

The clinical testing cohort included 31 patients with oropharyngeal cancer treated between April 2011 

and March 2019 at ZJU1 and NFH. For these patients, whole body PET scans before treatment were 

available. The automated segmentation successfully identified tumors for all patients (Protocol Fig. 12). 

HPV status (p16 staining) was available for only 1 patient who was HPV–. The 7th edition TNM staging 

for all patients were available, and patients with distant metastases were preliminarily excluded.  

 

Protocol Fig. 12 A diagram specifying inclusion and exclusion information for patients and PET images 

from the two sub-cohorts in the clinical testing cohort, and the HPV status. HPV=human papillomavirus. 

 

Twenty-five patients (81%) underwent CCRT: all received chemotherapy with cisplatin (75 mg/m2, high 

does) every 3 weeks. Twenty-three patients (74%) received surgery. Among them, four patients with an 

early stage (three T1N0 and one T2N0 cases) and one patient with decreased kidney function (T2N2b 

case with curative intended surgery) received surgery only. Although different treatment modalities were 

utilized, intensive radiotherapies (radiation dose range: 66-70 Gy; 2 Gy per day, 5 days per week) were 

performed for 26 (84%) patients. 

 

5 Nomogram 

Integrated nomograms were built upon the DeepPET-OPSCC score and other clinical risk factors, i.e., 

• Integrated nomogram: combining DeepPET-OPSCC score, age, sex, HPV status, cT, cN, and 

cTNM stage. 

• Integrated nomogram without HPV: combining DeepPET-OPSCC score, age, sex, cT, cN, and 

cTNM stage. 
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Protocol Fig. 13 Establishing and validating a nomogram which combines the DeepPET-OPSCC score 

and clinical factors to predict overall survival (OS). (A) Integrated nomogram combing the DeepPET-

OPSCC score and age, sex, HPV, cT, cN, and cTNM stage. The points of DeepPET-OPSCC score, HPV 

status, cT, cN, and cTNM stages are obtained based on the top “points” bar with scale of 0-100. Then, 

the total point is calculated by summing the five points. By mapping the total point to the “Total Points” 

bar, the predicted risk score is obtained by checking the “Linear Predictor” bar, and the predicted n-year 

overall survival (OS) is obtained by checking the “n-year OS” bar. (B) Calibration curves of the 

integrated nomogram in prediction of 2-year and 5-year OS.  
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Protocol Fig. 14 Establishing and validating a nomogram which combines the DeepPET-OPSCC score 

and clinical factors without HPV status to predict overall survival (OS). (A) Integrated nomogram 

combing the DeepPET-OPSCC score and age, sex, cT, cN, and cTNM stage. The points of DeepPET-

OPSCC score, HPV status, cT, cN, and cTNM stages are obtained based on the top “points” bar with 

scale of 0-100. Then, the total point is calculated by summing the five points. By mapping the total point 

to the “Total Points” bar, the predicted risk score is obtained by checking the “Linear Predictor” bar, and 

the predicted n-year overall survival (OS) is obtained by checking the “n-year OS” bar. (B) Calibration 

curves of the integrated nomogram in prediction of 2-year and 5-year OS.  
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Calibration curves were used to assess the consistency of predicted outcomes from the nomograms with 

true outcomes. The nomogram calibration curve demonstrated good agreement between the predicted 

and true survival probabilities, especially for 2-year OS (Protocol Fig. 13, Fig. 14). The integrated 

nomogram yielded a significantly higher c-index of 0.792 (95% CI 0.720–0.865) than the DeepPET-

OPSCC score and any individual clinical factor in the TCIA test cohort with known HPV status. Similar 

improvements were observed for the integrated nomogram without HPV status (Supplementary Table 

S18). Time-dependent ROC analysis yielded AUCs at 2 years of the integrated nomograms with known 

HPV status of 0.804 (95% CI 0.758–0.848) and 0.867 (95% CI 0.797–0.931) in the discovery and TCIA 

test cohort, respectively; and without HPV of 0.754 (95% CI 0.659–0.841) in the TCIA test cohort. As 

such, the time-dependent ROC analysis significantly outperformed each individual factor 

(Supplementary Figure S16). AUCs at 5 years in the discovery cohort of the integrated nomogram 

without HPV status are provided in the Supplementary Figure S17. 

 

6 Clinical Integration 

We deployed an application-ready pipeline using the NVIDIA-Docker container (version 2.0, 

https://github.com/NVIDIA/nvidia-docker). We aimed to enable translation and application of our 

DeepPET-OPSCC in daily clinical practice and clinical trials. In routine clinical practice, automated 

processing of a PET scan begins directly after the images have been saved to the local workstation from 

the PET scanner. Processing of PET scans is completed by our pipeline in a fully automated fashion and 

requires no additional manual intervention or labor costs. The processed results (e.g., tumor and lymph 

nodes segmentation masks on individual PET sequences, tables that include DeepPET-OPSCC risk 

scores) are automatically saved in the local workstation. In current research, many prognosis studies 

require human manual input to annotate tumor (and lymph node) masks. Hence the appeal of our fully 

automated process, which could considerably help in deploying objective, reproducible, and scalable 

imaging biomarkers. We tested the developed pipeline in a simulated clinical environment (the First 

Affiliated Hospital of Zhejiang University) with automated processing of all PET scans from 

retrospectively enrolled patients. Each PET exam was processed by our pipeline in an average of 2 min 

6 s on a machine with an Intel and an NVIDIA Titan RTX-6000 GPU. The processing pipeline can be 

scaled up linearly by adding additional processing power without changing and interrupting the existing 

workflow. 

 

Protocol Fig. 15 The developed segmentation and prognosis model is part of a scalable and fully 

automated processing pipeline for PET exams. The pipeline is implemented in a fully automated fashion 

and does not require any additional human intervention and labors. The processed results (e.g. tumor and 

lymph node segmentation masks on individual PET sequences, tables that include DeepPET-OPSCC 

scores and risk categories) are automatically saved for interpretation. Overall, this enables objective, 

fully automated, high-throughput generation of imaging-based predictive biomarkers for OPSCC.  

 

The Docker container that encapsulates our workflow executes the following fully automated steps: 

1. Parallelized SUV conversion of DICOM images to NIfTI format. 

https://github.com/NVIDIA/nvidia-docker
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2. Tumor and lymph node segmentation inference through the ensemble models described within 

this manuscript. 

3. Parallelized data pre-processing (resampling both images and masks, distance map calculation 

and augmented inference samples generation) 

4. Imaging marker generation through the ensemble DeepPET-OPSCC models. 

The complete steps can be found in Protocol Fig. 15.  
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Table S1: REporting recommendations for tumour MARKer prognostic studies (REMARK) 

 

Item to be reported Where reported 
INTRODUCTION  

1 State the marker examined, the study objectives, and any pre-specified hypotheses.   Introduction, Methods, 
appendix 

MATERIALS AND METHODS  
Patients  

2 Describe the characteristics (e.g., disease stage or co-morbidities) of the study 
patients, including their source and inclusion and exclusion criteria.   

Methods, Results 

3 Describe treatments received and how chosen (e.g., randomized or rule-based).   Results, Protocol 
Specimen characteristics  

4 Describe type of biological material used (including control samples) and methods of 
preservation and storage. 

Methods, Protocol 

Assay methods  
5 Specify the assay method used and provide (or reference) a detailed protocol, 

including specific reagents or kits used, quality control procedures, reproducibility 
assessments, quantitation methods, and scoring and reporting protocols. Specify 
whether and how assays were performed blinded to the study endpoint. 

Methods (FDG PET 
imaging) 

Study design  
6 State the method of case selection, including whether prospective or retrospective and 

whether stratification or matching (e.g., by stage of disease or age) was used. Specify 
the time period from which cases were taken, the end of the follow-up period, and the 
median follow-up time.   

Methods 

7 Precisely define all clinical endpoints examined.  Methods 
8 List all candidate variables initially examined or considered for inclusion in models.  Appendix  
9 Give rationale for sample size; if the study was designed to detect a specified effect 

size, give the target power and effect size.  
Include as many samples as 

possible 
Statistical analysis methods  

10 Specify all statistical methods, including details of any variable selection procedures 
and other model-building issues, how model assumptions were verified, and how 
missing data were handled.  

Methods, appendix, Protocol 

11 Clarify how marker values were handled in the analyses; if relevant, describe methods 
used for cutpoint determination. 

Method, Protocol 

RESULTS  
Data   

12 Describe the flow of patients through the study, including the number of patients 
included in each stage of the analysis (a diagram may be helpful) and reasons for 
dropout. Specifically, both overall and for each subgroup extensively examined report 
the numbers of patients and the number of events. 

Protocol 

13 Report distributions of basic demographic characteristics (at least age and sex), 
standard (disease-specific) prognostic variables, and tumor marker, including 
numbers of missing values.  

Table 1, appendix 

Analysis and presentation   
14 Show the relation of the marker to standard prognostic variables. Table 2 and 3 
15 Present univariable analyses showing the relation between the marker and outcome, 

with the estimated effect (e.g., hazard ratio and survival probability). Preferably 
provide similar analyses for all other variables being analyzed. For the effect of a 
tumor marker on a time-to-event outcome, a Kaplan-Meier plot is recommended.  

Results, figure 2, appendix 

16 For key multivariable analyses, report estimated effects (e.g., hazard ratio) with 
confidence intervals for the marker and, at least for the final model, all other variables 
in the model.  

Table 2 

17 Among reported results, provide estimated effects with confidence intervals from an 
analysis in which the marker and standard prognostic variables are included, 
regardless of their statistical significance.  

Table 2, appendix 

18 If done, report results of further investigations, such as checking assumptions, 
sensitivity analyses, and internal validation. 

Internally tested by nested 
cross-validation, externally 

tested in two cohorts  
DISCUSSION  

19 Interpret the results in the context of the pre-specified hypotheses and other relevant 
studies; include a discussion of limitations of the study. 

Discussion 

20 Discuss implications for future research and clinical value.  Discussion 
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Table S2: Checklist necessary for possible approval of an AJCC (American Joint Committee on 
Cancer) risk model proposed by Kattan et al 

 
Item number Checklist item Comments 

Inclusion Criteria (Model Must Have All of These Characteristics) 
1 The probability of overall survival, DSS, or DSM 

must be the outcome predicted. 
OK, overall survival is predicted. 

2 The model should address a clinically relevant 
question—a prediction someone cares about. 

Yes, predict overall survival of non-metastasis 
oropharyngeal cancer with modern treatment. 

3 At face value, the model should include the relevant 
predictors or explain why something relevant was 

not included. 

Yes, included established predictive factors in the 
nomogram model. 

4 The model validation study should specify precisely 
which patients were used to evaluate the model and 
the validation data set’s inclusion/exclusion criteria. 

OK, main manuscript (Methods) and protocol. 

5 The model should be assessed for generalizability 
and external validation. 

Yes, assessed in internal test sets and external 
validation cohorts from eight centers. 

6 The model should have a well-defined prognostic 
time zero. 

Yes, date of cancer diagnosis, Methods and 
protocol. 

7 All predictors must be known at time zero and 
sufficiently defined for someone else to use. 

OK, main manuscript and appendix. 

8 Sufficient detail must be available to implement the 
model (need the equation, not a crippled version or 
simple, not yet validated score chart) OR the author 

must allow free access to the model. 

OK, main manuscript (Methods) and protocol. 

9 A measure of discrimination must have been 
reported. This is often measured as the concordance 

index and needs to be assessed on the validation 
data set(s). 

OK, c-index and AUC are used and assessed on the 
validation cohorts. 

10 Calibration in the small must be assessed (from the 
external validation data set) and provided. 

Calibration in the small is a plot of predicted 
probability versus observed proportion. 

OK, appendix (risk distribution). 

11 The model should be validated over a time frame 
and in a practice setting that are relevant to 

contemporary patients with disease. 

OK, main manuscript, our marker is validated in 
patients treated between 2003 and 2019. 

12 It should be clear which initial treatment(s), if any, 
were applied, and with what frequency. 

OK, main manuscript, our marker is effective in 
patients treated primarily by radiation with or 

without chemotherapy, surgery with or without 
postoperative treatments, or initial induction 

chemotherapy. 
13 The development and/or the validation of the 

prediction model must appear as a peer-reviewed 
journal article. The reference(s) needs to be 

provided. 

In submission. 

Exclusion Criteria (Any of These Exclude a Model From Consideration) 
1 A substantial proportion of patients had essentially 

no follow-up (either missing entirely or very short 
censored follow-up) in the validation data set. 

No, main manuscript, the median follow-up time is 
2.3-4.3 years in validation cohorts. 

2 No information is available on the number of 
missing values in the validation data set. 

No, main manuscript and appendix, information 
missing values is provided. 

3 The number of events in the validation data set is 
small. This is a relatively unexplored literature to 

make firm suggestions on how small is small. 
However, 100 events may be the minimum needed. 

No, main manuscript, there are totally 212 events 
in the internal test sets and validation cohorts. 

 
Source: Kattan, M.W., Hess, K.R., Amin, M.B., Lu, Y., Moons, K.G., Gershenwald, J.E., Gimotty, P.A., Guinney, J.H., Halabi, S., 
Lazar, A.J. and Mahar, A.L. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for 
individualized prognosis in the practice of precision medicine. CA Cancer J Clin 2016; 66: 370-374. 
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Table S3: Clinical characteristics in the entire cohort with known HPV status, cT, cN, and cTNM 
stage information (n=419) 
 

 HPV+ (n=161) HPV– (n = 258) 
Age, years 58 (54-64) 53 (47-61) 
Age, years   
   <55 48 (30%) 144 (56%) 
   ≧55 113 (70%) 114 (44%) 
Sex   
   Female 35 (22%) 16 (6%) 
   Male 126 (78%) 242 (94%) 
cT stage   
   cT1 25 (16%) 15 (6%) 
   cT2 74 (46%) 74 (29%) 
   cT3  39 (24%) 54 (21%) 
   cT4a 17 (11%) 83 (33%) 
   cT4b 6 (4%) 32 (12%) 
cN stage   
   cN0 23 (14%) 57 (22%) 
   cN1 15 (9%) 26 (10%) 
   cN2 116 (72%) 158 (61%) 
   cN3 7 (4%) 17 (7%) 
cTNM stage   
   I 6 (4%) 3 (1%) 
   II 11 (7%) 22 (9%) 
   III 19 (12%) 33 (13%) 
   IVA 113 (70%) 158 (61%) 
   IVB 12 (8%) 42 (16%) 
Primary treatment   
   Surgery 5 (3%) 10 (4%) 
   Radiotherapy 156 (97%) 248 (96%) 
Chemotherapy   
   Yes 129 (80%) 223 (86%) 
   No 32 (20%) 35 (14%) 
Follow-up time, years 3.8 (2.8-5.7) 2.6 (1.3-5.4) 
Event   
   Death 18 (10.9%) 135 (52.3%) 
Overall survival (95% CI)   
   2 years 95.7% (92.7-98.9) 63.8% (58.1-69.9) 
   5 years 85.4% (78.7-92.8) 45.6% (39.6-52.5) 

NOTE. The median age 58 of HPV+ is similar with the median age 57 in the ICON-S study (reference 2 in the main text);  the 
median age 53 of HPV– is similar with the median age 52 in a study from Asian (reference 18 in the main text). Four patients with 
HPV+ were excluded due to the missing cT and cTNM IV sub-stage information. The only HPV– patient in the clinical deployment 
test cohort is not included in this table and the following K-M plot subgroup analysis.  
Abbreviations: HPV=human papillomavirus.  
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Table S4: Univariable Cox regression for overall survival of the DeepPET-OPSCC risk category, 
its constituents, and established prognostic markers in the discovery, TCIA test, and entire cohorts 
with known HPV status 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=353)  Entire cohort with known 
HPV status (n=423) 

  HR (95%CI) p value  HR (95%CI) p value  HR (95%CI) p value 
DeepPET-OPSCC (high vs low)  3·17 (2·18-4·63) <0·0001  3·15 (1·97-5·05) <0·0001  3·79 (2·70-5·32) <0·0001 
DeepPET-OPSCC-T (high vs low)  3·07 (2·11-4·46) <0·0001  2·89 (1·81-4·63) <0·0001  3·89 (2·78-5·45) <0·0001 
DeepPET-OPSCC-TN (high vs low)  2·82 (1·95-4·09) <0·0001  2·71 (1·68-4·35) <0·0001  3·08 (2·20-4·32)  <0·0001 
Age (≥55 years vs <55 years)  0·67 (0·46-0·95) 0·026  2·17 (1·19-3·98) 0·012  0·59 (0·43-0·82) 0·0014 
Sex (male vs female)  2·51 (1·02-6·14) 0·048  2·23 (1·07-4·68) 0·032  2·93 (1·44-5·97) 0·0031 
HPV (+ vs –)  0·18 (0·09-0·38) <0·0001  .. ..  0·17 (0·10-0·27) <0·0001 
cT stage (T4 vs T1-T3)  2·92 (2·04-4·17) <0·0001  2·47 (1·49-4·10) 0·00045  3·51 (2·55-4·84) <0·0001 
cN stage (N2-N3 vs N0-N1)  1·81 (1·20-2·74) 0·0051  0·94 (0·55-1·62) 0·83  1·65 (1·13-2·41) 0·010 
cTNM stage (IV vs I-III)  1·86 (1·16-3·00) 0·011  1·20 (0·67 -2·15) 0·55  1·80 (1·17-2·79) 0·0081 
Radiomics signature (high vs low)  1·85 (1·30-2·65) 0·00070  1·81 (1·13-2·90) 0·014  2·21 (1·59-3·06) <0·0001 
SUVmax (≥14.65 vs <14.65)  1·22 (0·86-1·73) 0·26  1·17 (0·73-1·87) 0·52  1·31 (0·95-1·80) 0·095 
MTV (≥22.66 cm3 vs <22.66 cm3)  2·41 (1·68-3·47) <0·0001  1·50 (0·94 -2·39) 0·093  2·40 (1·73-3·34) <0·0001 
Primary treatment (surgery vs radiotherapy)  0·96 (0·35-2·61) 0·94  0·54 (0·13-2·20) 0·39  0·95 (0·39-2·31) 0·91 
Chemotherapy (yes vs no)  0·80 (0·39-1·64) 0·55  0·61 (0·38-0·98) 0·041  1·06 (0·69-1·63) 0·79 

NOTE. Cutoff thresholds for SUVmax and MTV were median values in the discovery cohort. 
TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. SUVmax=maximum standard uptake value. MTV=metabolic 
tumor volume. 
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Table S5: Multivariable Cox regression for overall survival in the discovery, TCIA test, and entire 
cohort with known HPV status; the multivariable model included the DeepPET-OPSCC risk 
category and established prognostic markers 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=353)  Entire cohort with known HPV 
status (n=423) 

  HR (95%CI) p value  HR (95%CI) p value  HR (95%CI) p value 
DeepPET-OPSCC (high vs low)  2.09 (1.34-3.25) 0.0011  2.78 (1.62-4.76) 0.0002  2.34 (1.58-3.47) <0.0001 
Age (≥55 years vs <55 years)  0.88 (0.60-1.30) 0.53  2.20 (1.20-4.05) 0.011  0.86 (0.61-1.20) 0.37 
Sex (male vs female)  1.39 (0.55-3.54) 0.49  2.00 (0.95-4.25) 0.068  1.47 (0.70-3.07) 0.31 
HPV (+ vs –)  0.19 (0.09-0.41) <0.0001  .. ..  0.23 (0.14-0.39) <0.0001 
cT stage (T4 vs T1-T3)  1.69 (1.07-2.69) 0.026  2.17 (1.10-4.25) 0.024  1.75 (1.15-2.64) 0.0084 
cN stage (N2-N3 vs N0-N1)  1.83 (1.19-2.81) 0.0058  1.02 (0.57-1.83) 0.95  1.78 (1.20-2.65) 0.0041 
SUVmax (≥14.65 vs <14.65)  0.69 (0.47-1.02) 0.061  1.33 (0.78-2.30) 0.30  0.77 (0.54-1.08) 0.12 
MTV (≥22.66 cm3 vs <22.66 cm3)  1.28 (0.77-2.13) 0.34  0.60 (0.30-1.17) 0.13  1.09 (0.70-1.70) 0.69 
Chemotherapy (Yes vs No)  1.47 (0.98-2.20) 0.062  0.54 (0.32-0.92) 0.024  0.96 (0.66-1.39) 0.83 

TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. SUVmax=maximum standard uptake value. MTV=metabolic 
tumor volume. 
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Table S6: Multivariable Cox regression for overall survival in the discovery, TCIA test, and entire 
cohort with known HPV status; the multivariable model included the DeepPET-OPSCC-T risk 
category and established prognostic markers 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=353)  Entire cohort with known HPV 
status (n=423) 

  HR (95%CI) p value  HR (95%CI) p value  HR (95%CI) p value 
DeepPET-OPSCC-T (high vs low)  1.64 (1.03-2.61) 0.037  2.41 (1.41-4.14) 0.0014  2.14 (1.44-3.18) 0.00016 
Age (≥55 years vs <55 years)  0.94 (0.64-1.39) 0.77  2.21 (1.20-4.08) 0.011  0.91 (0.65-1.28) 0.59 
Sex (male vs female)  1.44 (0.57-3.66) 0.44  1.96 (0.93-4.14) 0.079  1.45 (0.69-3.02) 0.33 
HPV (+ vs –)  0.21 (0.10-0.45) <0.0001  .. ..  0.24 (0.14-0.41) <0.0001 
cT stage (T4 vs T1-T3)  1.79 (1.14-2.82) 0.012  2.24 (1.14-4.41) 0.020  1.71 (1.13-2.59) 0.011 
cN stage (N2-N3 vs N0-N1)  1.94 (1.26-2.99) 0.0026  1.02 (0.57-1.84) 0.94  1.81 (1.22-2.69) 0.0032 
SUVmax (≥14.65 vs <14.65)  0.73 (0.50-1.07) 0.11  1.28 (0.74-2.20) 0.38  0.80 (0.57-1.13) 0.21 
MTV (≥22.66 cm3 vs <22.66 cm3)  1.36 (0.82-2.27) 0.23  0.64 (0.32-1.26) 0.20  1.13 (0.73-1.76) 0.59 
Chemotherapy (Yes vs No)  0.54 (0.25-1.16) 0.11  0.55 (0.33-0.94) 0.028  0.95 (0.66-1.38) 0.79 

TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. SUVmax=maximum standard uptake value. MTV=metabolic 
tumor volume. 
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Table S7: Multivariable Cox regression for overall survival in the discovery, TCIA test, and entire 
cohort with known HPV status; the multivariable model included the DeepPET-OPSCC-TN risk 
category and established prognostic markers 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=353)  Entire cohort with known HPV 
status (n=423) 

  HR (95%CI) p value  HR (95%CI) p value  HR (95%CI) p value 
DeepPET-OPSCC-TN (high vs low)  1.92 (1.22-3.01) 0.0045  2.53 (1.46-4.41) 0.0010  1.85 (1.24-2.77) 0.0028 
Age (≥55 years vs <55 years)  0.86 (0.59-1.26) 0.44  2.24 (1.22-4.13) 0.0097  0.86 (0.62-1.21) 0.39 
Sex (male vs female)  1.53 (0.60-3.90) 0.37  2.06 (0.97-4.34) 0.059  1.50 (0.72-3.13) 0.28 
HPV (+ vs –)  0.19 (0.09-0.39) <0.0001  .. ..  0.22 (0.13-0.37) <0.0001 
cT stage (T4 vs T1-T3)  1.63 (1.02-2.61) 0.042  2.25 (1.14-4.46) 0.020  1.74 (1.14-2.66) 0.0010 
cN stage (N2-N3 vs N0-N1)  1.97 (1.28-3.03) 0.002  1.07 (0.60-1.92) 0.82  1.82 (1.23-2.71) 0.0028 
SUVmax (≥14.65 vs <14.65)  0.68 (0.46-1.00) 0.048  1.26 (0.74-2.14) 0.39  0.80 (0.57-1.13) 0.20 
MTV (≥22.66 cm3 vs <22.66 cm3)  1.36 (0.83-2.25) 0.27  0.58 (0.29-1.16) 0.12  1.17 (0.75-1.84) 0.49 
Chemotherapy (Yes vs No)  0.46 (0.22-0.98) 0.045  0.51 (0.30-0.86) 0.012  0.92 (0.63-1.33) 0.66 

TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. SUVmax=maximum standard uptake value. MTV=metabolic 
tumor volume. 
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Table S8: Multivariable Cox regression for overall survival in the discovery, TCIA test, and entire 
cohort with known HPV status; the multivariable model included the DeepPET-OPSCC score 
(continuous variable) and established prognostic markers 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=353)  Entire cohort with known HPV 
status (n=423) 

  HR (95%CI) p value  HR (95%CI) p value  HR (95%CI) p value 
DeepPET-OPSCC (continuous variable)  4.59 (2.29-9.20) <0.0001  8.93 (2.96-26.95) 0.0001  4.45 (2.49-7.96) <0.0001 
Age (≥55 years vs <55 years)  0.99 (0.67-1.46) 0.95  2.16 (1.17-4.00) 0.014  1.07 (0.75-1.53) 0.71 
Sex (male vs female)  1.57 (0.62-3.98) 0.34  1.80 (0.85-3.80) 0.12  1.51 (0.72-3.14) 0.28 
HPV (+ vs –)  0.22 (0.11-0.47) <0.0001  .. ..  0.25 (0.15-0.42) <0.0001 
cT stage (T4 vs T1-T3)  1.92 (1.21-3.07) 0.0061  1.72 (0.78-3.75) 0.18  1.63 (1.08-2.44) 0.019 
cN stage (N2-N3 vs N0-N1)  1.94 (1.26-2.99) 0.0026  0.95 (0.52-1.71) 0.85  1.83 (1.23-2.72) 0.0027 
SUVmax (continuous variable)  0.95 (0.88-1.03) 0.21  1.02 (0.92-1.13) 0.24  1.00 (0.93-1.07) 0.98 
MTV (continuous variable)  1.00 (0.99-1.00) 0.15  1.00 (0.98-1.01) 0.55  0.99 (0.98-1.00) 0.019 
Chemotherapy (Yes vs No)  0.49 (0.23-1.02) 0.056  0.53 (0.31-0.89) 0.017  0.52 (0.32-0.85) 0.0097 

TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. SUVmax=maximum standard uptake value. MTV=metabolic 
tumor volume. 
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Table S9: Complete clinical characteristics (to complement Table 1 in the main text) in the 
discovery cohort 

 
 Discovery cohort (n=268) 
Smoking  
  Yes 213 (79%) 
  No 
Pack-years 
  > 10 
  ≤ 10 
  Missing 

55 (21%) 
 

183 (68%) 
65 (24%) 
20 (7%) 

Alcohol  
  Yes 192 (72%) 
  No 76 (28%) 
Betel nut  
  Yes 153 (57%) 
  No 115 (43%) 
TP53 intensity  
  0 40 (15%) 
  1 4 (1%) 
  2 8 (3%) 
  3 191 (71%) 
  Missing 25 (9%) 
TP53 percentage  
  0-30% 148 (55%) 
  31%-60% 83 (31%) 
  61%-90% 60 (22%) 
  90%+ 1 (<1%) 
  Missing 24 (9%) 
EGFR intensity  
   0 1 (<1%) 
   1  17 (6%) 
   2 80 (30%) 
   3 147 (55%)  
   Missing 23 (9%) 
EGFR percentage  
   0-30% 54 (20%) 
   31%-60% 77 (29%) 
   61%-90% 95 (35%) 
   90%+ 19 (7%) 
   Missing 23 (9%) 
Cyclin D1 intensity  
   0 12 (4%) 
   1 13 (5%) 
   2 39 (15%) 
   3 180 (67%) 
   Missing 24 (9%)  
Cyclin D1 percentage  
   0-30% 156 (58%) 
   31%-60% 47 (18%) 
   61%-90% 41 (15%) 
   90%+ 0  
   Missing 24 (9%) 
ERCC Ki intensity  
   0 25 (9%) 
   1 
   2 
   3 
   Missing 

48 (18%) 
71 (26%) 
98 (37%) 
26 (10%) 

ERCC Ki percentage  
   0-30% 106 (40%) 
  31%-60% 59 (22%) 
  61-90% 71 (26%) 
  90%+ 6 (2%) 
   Missing 26 (10%) 
Cell differentiation  
   Poor 
   Moderate 

70 (26%) 
152 (57%) 

   Well 10 (4%) 
   Missing 36 (13%) 

                                                          Data are expressed as counts (percentages). 
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Table S10: Univariable Cox regression for overall survival in the discovery cohort (with complete 
variables) 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
                                          
HPV=human papillomavirus. MTV=metabolic tumor volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables  Discovery cohort (n=268) 
  HR (95%CI) p value 
DeepPET-OPSCC (high vs low)  3.17 (2.18-4.63) <0.0001 
DeepPET-OPSCC-T (high vs low)  3.07 (2.11-4.46) <0.0001 
DeepPET-OPSCC-TN (high vs low)  2.82 (1.95-4.09) <0.0001 
Age (≥55 years vs <55 years)  0.67 (0.46-0.95) 0.026 
Sex (male vs female)  2.51 (1.02-6.14) 0.048 
HPV/p16 (+ vs –)  0.18 (0.09-0.38) <0.0001 
cT stage (T4 vs T1-T3)  2.92 (2.04-4.17) <0.0001 
cN stage (N2-N3 vs N0-N1)  1.81 (1.20-2.74) 0.0051 
cTNM stage (IV vs I-III)  1.86 (1.16-3.00) 0.011 
SUVmax (≥14.65 vs <14.65)  1.22 (0.86-1.73) 0.26 
MTV (≥22.66 cm3 vs <22.66 cm3)  2.41 (1.68-3.47) <0.0001 
Smoking (Yes vs No) 
Pack-years (>10 vs ≤10) 

 3.72 (2.00-6.92) 
2.13 (1.20-3.81) 

<0.0001 
0.010 

Alcohol (Y vs N)  2.97 (1.82-4.85) <0.0001 
Betel nut (Y vs N)  1.70 (1.18-2.46) 0.0046 
TP53 intensity  0.89 (0.77-1.04) 0.14 
TP53 percentage  1.01 (1.00-1.01) 0.019 
Cyclin D1 intensity  1.50 (1.13-2.00) 0.0056 
Cyclin D1 percentage  1.01 (1.00-1.02) 0.0021 
EGFR intensity  1.18 (0.89-1.58) 0.25 
EGFR percentage  1.01 (1.00-1.02) 0.015 
ERCC Ki intensity  0.87 (0.73-1.03) 0.11 
ERCC Ki percentage  1.00 (0.99-1.00) 0.43 
Cell differentiation  1.28 (0.91-1.82) 0.15 
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Table S11: Multivariable Cox regression for overall survival in the discovery cohort (with complete 
variables) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

*25 patients excluded due to missing observations. Due to the limited number of death events (n=123), up to 12 variables that are 
significant (p<0.05) in the univariable analysis (Table S9) were chosen for the multivariable analysis to avoid overfitting in the 
model. Pack-years is correlated with Smoking so it is not included. HPV=human papillomavirus. MTV=metabolic tumor volume. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables  Discovery cohort (n=243*)  
  HR (95%CI) p value  
DeepPET-OPSCC (high vs low)  1.87 (1.19-2.92) 0.0063  
Smoking (Yes vs No)  1.62 (0.68-3.89) 0.30  
Alcohol (Y vs N)  1.69 (0.86-3.33) 0.13  
BetNut (Y vs N) 
HPV/p16 (+ vs –) 

 
 

0.73 (0.47-1.14) 
0.43(0.19-0.99) 

0.16 
0.047 

 

cT stage (T4 vs T1-T3)  1.84 (1.17-2.90) 0.0088  
cN stage (N2-3 vs N0-1)  1.78 (1.15-2.77) 0.010  
MTV (≥22.66 cm3 vs <22.66 cm3)  1.24 (0.77-1.99) 0.38  
Cyclin D1 intensity  1.32 (0.97-1.79) 0.078  
Cyclin D1 percentage  1.00 (0.99-1.01) 0.61  
TP53 percentage  1.00 (0.99-1.01) 0.99  
EGFR percentage  1.00 (0.99-1.01) 0.098  
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Table S12: Harrell’s concordance index with 95% confidence intervals (CIs) between overall 
survival and a DeepPET-OPSCC individual or ensemble model scores, evaluated on the discovery 
cohort and TCIA test sub-cohorts. Bold highlights the best performing single model on the 
discovery cohort and the ensemble model 
 

Variable Discovery cohort TCIA test cohort 
 CGMH TCIA: HN-PET-CT TCIA: HNSCC TCIA: Head-Neck-

Radiomics-HN1 
DeepPET-OPSCC-T score model 1 0.725 (0.625-0.825) 0.616 (0.507-0.725) 0.649 (0.545-0.753) 0.724 (0.586-0.862) 
DeepPET-OPSCC-T score model 2 0.718 (0.619-0.817) 0.643 (0.523-0.763) 0.675 (0.572-0.778) 0.667 (0.524-0.811) 
DeepPET-OPSCC-T score model 3 0.732 (0.638-0.826) 0.649 (0.527-0.772) 0.644 (0.536-0.752) 0.649 (0.520-0.777) 
DeepPET-OPSCC-T score model 4 0.659 (0.529-0.788) 0.729 (0.650-0.809) 0.662 (0.568-0.757) 0.653 (0.523-0.784) 
DeepPET-OPSCC-T score model 5 0.644 (0.520-0.768) 0.663 (0.547-0.779) 0.653 (0.547-0.760) 0.642 (0.506-0.777) 
DeepPET-OPSCC-T score combine 0.702 (0.652-0.752) .. .. .. 
DeepPET-OPSCC-T score ensemble .. 0.669 (0.559-0.778) 0.666 (0.560-0.768) 0.658 (0.517-0.799) 
DeepPET-OPSCC-TN score model 1 0.729 (0.632-0.825) 0.638 (0.520-0.755) 0.676 (0.571-0.781) 0.677 (0.550-0.804) 
DeepPET-OPSCC-TN score model 2 0.684 (0.573-0.794) 0.642 (0.530-0.755) 0.701 (0.616-0.786) 0.717 (0.591-0.843) 
DeepPET-OPSCC-TN score model 3 0.712 (0.622-0.803) 0.617 (0.495-0.739) 0.623 (0.513-0.734) 0.675 (0.560-0.789) 
DeepPET-OPSCC-TN score model 4 0.683 (0.565-0.800) 0.630 (0.509-0.752) 0.692 (0.587-0.797) 0.677 (0.536-0.818) 
DeepPET-OPSCC-TN score model 5 0.616 (0.506-0.726) 0.620 (0.473-0.766) 0.692 (0.604-0.779) 0.667 (0.544-0.791) 
DeepPET-OPSCC-TN score combine 0.682 (0.632-0.733) .. .. .. 
DeepPET-OPSCC-TN score ensemble .. 0.648 (0.522-0.773) 0.694 (0.596-0.792) 0.672 (0.534-0.811) 

In the discovery cohort, each of five models was evaluated on the corresponding test sets in the nest five-fold cross-validation. 
When applying to the TCIA test cohort, each of five models was evaluated on all the patients. DeepPET-OPSCC-T=deep learning 
prognosis model uses SUV map/image and tumor mask as input. DeepPET-OPSCC-TN=deep learning prognosis model uses SUV 
map/image, tumor mask, and nodes-to-tumor distance map as input. CGMH=Chang Gung Memorial Hospital. TCIA=The Cancer 
Imaging Archive. 
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Table S13: Comparison between DeepPET-OPSCC and other computational models for overall 
survival prediction 
 

Variable Discovery cohort (n=268) TCIA test cohort (n=353) 
 c-index P c-index P 
DeepPET-OPSCC 0.707 (0.658-0.757) ref 0.689 (0.621-0.757) ref 
DeepPET-OPSCC-T  0.702 (0.652-0.752) 0.29 0.672 (0.604-0.739) 0.10 
DeepPET-OPSCC-TN  0.682 (0.632-0.733) 0.012 0.692 (0.625-0.760) 0.63 
3D ResNet-OPSCC 0.646 (0.595-0.697) 0.0022 0.665 (0.599-0.731) 0.21 
2D DeepPET-OPSCC  0.605 (0.552-0.658) <0.0001 0.591 (0.519-0.663) 0.0058 
Radiomics signature 0.621 (0.570-0.672) 0.0001 0.608 (0.538-0.677) 0.0044 

p-value is measured by the dependent Student t test. 
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Table S14: Clinical characteristics in the treatment analysis of using induction chemotherapy (IC) 
before concurrent chemoradiotherapy (CCRT) for patients with HPV– and TNM stage IVB cancer, 
in the entire cohort with known HPV status 
 

 IC+CCRT (n=14) CCRT (n = 26) p value 

Age, years 48 (44-54) 51 (44-58) 0.48 
Age, years   0.48 
   <55 11 (79%) 17 (65%)  
   ≧55 3 (21%) 9 (35%)  
Sex   0.53 
   Female 0 (0%) 2 (8%)  
   Male 14 (100%) 24 (92%)  
cT stage   0.45 
   cT1 0 (0%) 0 (0%)  
   cT2 1 (7%) 4 (15%)  
   cT3  0 (0%) 3 (12%)  
   cT4a 1 (7%) 1 (4%)  
   cT4b 12 (86%) 18 (69%)  
cN stage   0.61 
   cN0 1 (7%) 4 (15%)  
   cN1                         0 1 (4%)  
   cN2 8 (57%) 10 (39%)  
   cN3                         5 (36%) 11 (42%)  
Follow-up time, years 1.8 (1.0-2.7) 3.1 (1.1-6.0)  
Event    
   Death 
Overall survival (95% CI) 
   2 years 
   5 years 

11 (78.6%) 
 

50.0% (29.6-84.4%) 
21.4% (7.86-58.4%) 

15 (57.7%) 
 

61.5% (45.4-83.4%) 
43.8% (27.8-69.1%) 

 

*p values were calculated by the Kruskal-Wallis test for continuous variables and the Chi-square test or Fisher exact test for 
categorical variables, as appropriate. 
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Table S15: Associations between DeepPET-OPSCC risk category and the general characteristics 
of patients in the entire cohort with known HPV status (n=419) 
 

Variable  DeepPET-OPSCC risk category  Spearman’s correlation 
  High risk (n=179) Low risk (n=240)  Rho (95% CI) P 
Age (continuous), years  55 (48–62) 56 (50–62)  -0.063 (-0.16 to 0.030) 0.198 
Age (dichotomous), years  .. ..  -0.068 (-0.16 to 0.028) 0.168 
   <55  89 (50%) 103 (43%)  .. .. 
   ≧55  90 (50%) 137 (57%)  .. .. 
Sex  .. ..  0.14 (0.058 to 0.22) 0.003 
   Female  12 (7%) 39 (16%)  .. .. 
   Male  167 (93%) 201 (84%)  .. .. 
HPV  .. ..  -0.28 (-0.36 to -0.19) <0.001 
   +  41 (23%) 120 (50%)  .. .. 
   –  138 (77%) 120 (50%)  .. .. 
cT stage  .. ..  0.48 (0.40 to 0.55) <0.001 
   cT1  8 (4%) 32 (13%)  .. .. 
   cT2  28 (16%) 120 (50%)  .. .. 
   cT3   41 (23%) 52 (22%)  .. .. 
   cT4a  69 (39%) 31 (13%)  .. .. 
   cT4b  33 (18%) 5 (2%)  .. .. 
cN stage  .. ..  0.18 (0.089 to 0.27) <0.001 
   cN0  26 (15%) 54 (23%)  .. .. 
   cN1  11 (6%) 30 (13%)  .. .. 
   cN2  125 (70%) 149 (62%)  .. .. 
   cN3  17 (9%) 7 (3%)  .. .. 
cTNM stage  .. ..  0.35 (0.27 to 0.42) <0.001 
   I  1 (<1%) 8 (3%)  .. .. 
   II  4 (2%) 29 (12%)  .. .. 
   III  12 (7%) 40 (17%)  .. .. 
   IVA  120 (67%) 151 (63%)  .. .. 
   IVB  42 (23%) 12 (5%)  .. .. 
SUVmax (continuous variable)  15.9 (11.8–21.8) 12.6 (9.5–17.6)  0.26 (0.16 to 0.34) <0.001 
MTV (continuous variable), cm3a  41.6 (22.5–62.2) 14.2 (7.8–23.3)  0.54 (0.46 to 0.60) <0.001 
Death time  15.7 (11.8-25.2)  23.9 (16.1-37.0)  -0.22 (-0.36 to -0.06) 0.006 
Follow-up time (Censored)  52.2 (31.6-86.7) 51.3 (37.6-77.9)  -0.02 (-0.15 to -0.10) 0.703 

HPV, human papillomavirus; SUVmax, maximum standardized uptake value; MTV, metabolic tumor volume. 
a Spearman’s correlation calculated for an increase of 1 cm3. 
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Table S16: Associations between the DeepPET-OPSCC risk category and the general 
characteristics of patients in the TCIA test cohort (n=348) 
 
Variables  DeepPET-OPSCC risk category  Spearman’s correlation 
  High risk (n=103) Low risk (n=245)  Rho (95% CI) p value 
Age (continuous), years  62 (54-68) 61 (54-67)  0.002 (-0.11 to 0.11)   0.97 
Age (dichotomous), years  .. ..  -0.03 (-0.14 to 0.08)   0.60 
   <55  31 (30%) 67 (27%)  .. .. 
   ≧55  72 (70%) 178 (73%)  .. .. 
Sex  .. ..  0.14 (0.04 to 0.22) 0.011 
   Female  13 (13%) 61 (25%)  .. .. 
   Male  90 (87%) 184 (75%)  .. .. 
HPV*  .. ..  -0.28 (-0.45 -0.12) 0.00047 
   +  22 (49%) 82 (77%)  .. .. 
   –  23 (51%) 24 (23%)  .. .. 
cT stage  .. ..  0.33 (0.21 to 0.43) <0.0001 
   cT1  11 (11%) 43 (18%)  .. .. 
   cT2  25 (24%) 124 (51%)  .. .. 
   cT3   27 (26%) 60 (24%)  .. .. 
   cT4a  37 (36%) 14 (6%)  .. .. 
   cT4b  3 (3%) 4 (2%)  .. .. 
cN stage  .. ..  0.11 (0.01 to 0.21) 0.035 
   cN0  8 (8%) 41 (17%)  .. .. 
   cN1  11 (11%) 23 (9%)  .. .. 
   cN2  75 (73%) 170 (69%)  .. .. 
   cN3  9 (9%) 11 (4%)  .. .. 
cTNM stage  .. ..  0.16 (0.06 to 0.25) 0.0025 
   I  0 6 (2%)  .. .. 
   II  2 (2%) 21 (9%)  .. .. 
   III  12 (12%) 36 (15%)  .. .. 
   IVA  77 (75%) 167 (68%)  .. .. 
   IVB  12 (12%) 15 (6%)  .. .. 
SUVmax (continuous)  15.3 (10.7-22.7) 12.9 (9.3-17.6)  0.18 (0.08 to 0.28) 0.0010 
MTV (continuous), cm3**  32.3 (14.9-57.1) 12.8 (6.6-22.6)  0.38 (0.27 to 0.48) <0.0001 
Death time  24.4 (14.5-44.9)  36.0 (19.2-57.4)  -0.17 (-0.41 to 0.07) 0.159 
Follow-up time (Censored)  64.8 (42.3-86.0) 53.9 (39.9-82.4)  0.06 (-0.05 to 0.17) 0.325 
*197 patients without HPV status. ** included as continuous variable (Spearman’s correlation corresponds to an increase of 1 cm3). 
Patients with substage missing were not included. TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. 
SUVmax=maximum standard uptake value. MTV=metabolic tumor volume. 
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Table S17: 5-year area under the curves (AUCs) of integrated nomograms, DeepPET-OPSCC 
score, and clinical factors in the discovery and TCIA test cohorts 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=348)  TCIA test cohort with known 
HPV status (n=151) 

  AUC (95% CI) p value  AUC (95% CI) p value  AUC (95% CI) p value 
Integrated nomogram  0.793 (0.749-0.834) 1 (ref)  .. ..  0.801 (0.727-0.874) 1 (ref) 
Integrated nomogram without HPV   0.755 (0.706-0.801) 0.019  0.727 (0.671-0.780) 1 (ref)  .. .. 
Clinical model  + MTV  0.765 (0.717-0.810) 0.025  .. ..  0.754 (0.659-0.843) 0.036 
Clinical model  0.768 (0.722-0.813) 0.052  .. ..  0.749 (0.649-0.842) 0.031 
Clinical model (wo HPV) + MTV  0.715 (0.663-0.770) 0.0029  0.657 (0.594-0.721) 0.0035  .. .. 
Clinical model (wo HPV)  0.713 (0.662-0.767) 0.0029  0.659 (0.597-0.723) 0.0066  .. .. 
DeepPET-OPSCC score  0.728 (0.677-0.777) 0.0048  0.670 (0.594-0.745) 0.057  0.667 (0.549-0.794) 0.0052 
HPV  0.634 (0.593-0.674) <0.0001  .. ..  0.624 (0.530-0.729) <0.0001 
cT  0.686 (0.632-0.738) 0.0003  0.613 (0.553-0.674) 0.0003  0.632 (0.522-0.745) 0.0014 
cN  0.582 (0.529-0.634) <0.0001  0.504 (0.443-0.564) <0.0001  0.524 (0.441-0.610) <0.0001 
cTNM  0.593 (0.536-0.645) <0.0001  0.522 (0.458-0.586) <0.0001  0.517 (0.423-0.614) <0.0001 
SUVmax  0.539 (0.481-0.595) <0.0001  0.485 (0.421-0.547) <0.0001  0.572 (0.479-0.671) 0.0002 
MTV  0.642 (0.584-0.697) <0.0001  0.598 (0.534-0.662) 0.0003  0.651 (0.552-0.747) 0.0038 

Integrated nomogram: combining DeepPET-OPSCC score, age, sex, HPV status, cT, cN, and cTNM stage.  
Clinical model: combining age, sex, HPV status, cT, cN, and cTNM stage. 
p-value is measured by the z test using 1000 bootstrap replicates. TCIA=The Cancer Imaging Archive. HPV=human papillomavirus.  
Notably, for TCIA test cohort (n = 353), 5 patients were labelled as cT4 stage but no information of cT4a or cT4b was available. 
Four of those five cases had HPV data. Since we applied integrated nomogram in subsequent studies that included clinical 
information (age, sex, HPV status, cT, cN, and cTNM stage), those five patients lacked cT information did not participate in 
nomogram and ROC curves analyses. Therefore, 348 (353 minus 5) cases were enrolled in model performance studies. 
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Table S18: Harrell’s concordance index (c-index) of integrated nomograms, clinical nomogram, 
clinical nomogram with MTV, radiomics, and PET-based markers in the discovery and TCIA test 
cohorts 
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=348)  TCIA test cohort with known 
HPV status (n=151) 

  c-index (95% CI) p value  c-index (95% CI) p value  c-index (95% CI) p value 
Integrated nomogram  0·757 (0·714-0·800) 1 (ref)  .. ..  0·792 (0·720-0·865) 1 (ref) 
Integrated nomogram (without HPV)   0·731 (0·684-0·779) 0.024  0·712 (0·646-0·777) 1 (ref)  .. .. 
Clinical model + MTV  0·726 (0·682-0·770) 0.0003  .. ..  0·771 (0·697-0·845) 0·070 
Clinical model  0·726 (0·683-0·769) 0.0006  .. ..  0·768 (0·694-0·842) 0.056 
Clinical model (without HPV) + MTV  0·690 (0·645-0·735) <0·0001  0·664 (0·595-0·733) 0·0087  .. .. 
Clinical model (wo HPV)  0·684 (0·640-0·729) <0·0001  0.664 (0.596-0.731) 0.011  .. .. 
DeepPET-OPSCC score  0·707 (0·658-0·757) 0.0023  0·688 (0·621-0·756) 0.186  0·714 (0·607-0·822) 0.034 
Radiomics signature   0·621 (0·570-0·672) <0·0001  0·607 (0·537-0·676) 0·0004  0·694 (0·588-0·800) 0·022 
SUVmax   0·559 (0·504-0·614) <0·0001  0·495 (0·421-0·569) <0·0001  0·563 (0·445-0·681) 0·0003 
MTV   0·641 (0·592-0·690) <0·0001  0·629 (0·560-0·698) 0·0027  0·677 (0·562-0·791) 0·015 

Integrated nomogram: combining DeepPET-OPSCC score, age, sex, HPV status, cT, cN, and cTNM stage.  
Clinical model: combining age, sex, HPV status, cT, cN, and cTNM stage. 
p-value is measured by the dependent Student t test. TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. 
SUVmax=maximum standard uptake value. MTV=metabolic tumor volume. 
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Table S19: 2-year area under the curves (AUCs) of integrated nomograms, DeepPET-OPSCC 
score, and clinical factors in the discovery and TCIA test cohorts  
 

Variables  Discovery cohort (n=268)  TCIA test cohort (n=348)  TCIA test cohort with known 
HPV status (n=151) 

  AUC (95% CI) p value  AUC (95% CI) p value  AUC (95% CI) p value 
Integrated nomogram  0.804 (0.758-0.848) 1 (ref)  .. ..  0.867 (0.797-0.931) 1 (ref) 
Integrated nomogram without HPV   0.772 (0.718-0.823) 0.022  0.754 (0.659-0.841) 1 (ref)  .. .. 
Clinical model + MTV  0.775 (0.724-0.820) 0.034  0.724 (0.634-0.809) 0.15  0.849 (0.778-0.916) 0.18 
Clinical model  0.778 (0.727-0.823) 0.059  0.720 (0.632-0.803) 0.14  0.846 (0.775-0.912) 0.15 
Clinical model (wo HPV) + MTV  0.738 (0.683-0.793) 0.0037       
Clinical model (wo HPV)  0.734 (0.678-0.788) 0.0036       
DeepPET-OPSCC score  0.741 (0.686-0.795) 0.0057  0.724 (0.625-0.815) 0.23  0.762 (0.626-0.887) 0.033 
HPV  0.621 (0.587-0.654) <0.0001  .. ..  0.751 (0.647-0.849) 0.0063 
cT  0.700 (0.643-0.758) 0.0003  0.701 (0.612-0.786) 0.14  0.704 (0.551-0.843) 0.022 
cN  0.615 (0.565-0.663) <0.0001  0.557 (0.483-0.629) 0.0008  0.618 (0.542-0.696) <0.0001 
cTNM  0.618 (0.570-0.666) <0.0001  0.568 (0.492-0.639) 0.0053  0.596 (0.519-0.676) <0.0001 
SUVmax  0.596 (0.531-0.656) <0.0001  0.529 (0.432-0.629) <0.0001  0.558 (0.412-0.705) 0.0004 
MTV  0.671 (0.610-0.731) <0.0001  0.700 (0.612-0.790) 0.099  0.744 (0.588-0.881) 0.045 

Integrated nomogram: combining DeepPET-OPSCC score, age, sex, HPV status, cT, cN, and cTNM stage.  
Clinical model: combining age, sex, HPV status, cT, cN, and cTNM stage. 
p-value is measured by the z test using 1000 bootstrap replicates. TCIA=The Cancer Imaging Archive. HPV=human papillomavirus. 
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Figure S1: Risk distribution of DeepPET-OPSCC score and patient overall survival status. Results 
shown on discovery and TCIA test cohorts 
 
 
A   Discovery cohort (n=268)                                                     B   TCIA test cohort (n=353) 

 
 
C   Discovery cohort: HPV+ (n=57)                                          D   TCIA test cohort: HPV+ (n=108)             

                    
 
 
E   Discovery cohort: HPV– (n=211)                                         F   TCIA test cohort: HPV– (n=47)              

  
 
Patients (horizontal axis) are sorted by the predicted risk scores (vertical axis). Red bars indicate events 
(i.e., death), Cyan bars indicate censored. TCIA=The Cancer Imaging Archive. 
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Figure S2: Examples of 3D PET images and corresponding heatmaps 
 
Figure S2A: Examples of 3D PET images (consecutive image slices), corresponding activation maps 
(heatmaps), and two enlarged images with heatmaps for better visual observation 

 
Red curves: auto-segmented tumor boundaries; Green curves: auto-segmented lymph node boundaries. The PET images are 
anonymized by blocking the eye region with black boxes. 

Male, 61 years, HPV–, cT2-cN2-cM0, Stage: IVA; SUVmax: 18.39.  Died at 14 months 

DeepPET-OPSCC-T: 0.83 

DeepPET-OPSCC-TN: 0.90 

Low-risk High-risk 



25 
 

Figure S2B: Additional examples of 3D PET images and corresponding heatmaps  
 

 
 
Red curves: auto-segmented tumor boundaries; Green curves: auto-segmented lymph node boundaries. The PET images are 
anonymized by blocking the eye region with black boxes. 

Male, 49 years, HPV-, cT4a-cN2-cM0, Stage: IVA; SUV max 12.03  Alive at 133 months 

DeepPET-OPSCC-T: 0.20 

DeepPET-OPSCC-TN: 0.16 

Low-risk High-risk 
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Figure S2C: Additional examples of 3D PET images and corresponding heatmaps  
 

 
 
Red curves: auto-segmented tumor boundaries; Green curves: auto-segmented lymph node boundaries. The PET images are 
anonymized by blocking the eye region with black boxes. 

Male, 56 years old, HPV+, cT3-cN2-cM0, Stage: IVA;  SUVmax 12.21  Survived at 115 months 

DeepPET-OPSCC-T: 0.38 

DeepPET-OPSCC-TN: 0.11 

Low-risk High-risk 
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Figure S2D: Additional examples of 3D PET images and corresponding heatmaps  
 

 
Red curves: auto-segmented tumor boundaries; Green curves: auto-segmented lymph node boundaries. The PET images are 
anonymized by blocking the eye region with black boxes. 

Male, 51 years old, HPV+, cT4-cN2-cM0, Stage: IVA;  SUVmax 14.38  Died at 15 months 

DeepPET-OPSCC-T: 0.39 

DeepPET-OPSCC-TN: 0.79 

Low-risk High-risk 
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Figure S3: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in the entire cohort with known HPV status 
 
A   HPV+                                                                                          B   HPV–  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-risk group High-risk group Low-risk group High-risk group 
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Figure S4: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cT stages of the entire HPV+ cohort 
 
A   HPV+ and cT1-3                                                                          B   HPV+ and cT4a 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-risk group High-risk group Low-risk group High-risk group 
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Figure S5: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cN stages of the entire HPV+ cohort 
 
A   HPV+ and cN2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-risk group High-risk group 
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Figure S6: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cTNM stages of the entire HPV+ cohort 
 
A   HPV+ and cTNM I-III                                                   
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Figure S7: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cT stages of the entire HPV– cohort 
 
A   HPV– and cT1-3                                                                       B   HPV– and cT4a 

        

C   HPV– and cT4b 

 
 

 

 

 

 

 

 

 

Low-risk group High-risk group Low-risk group High-risk group 

Low-risk group High-risk group 
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Figure S8: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cN stages of the entire HPV– cohort 
 
A   HPV– and cN0                                                                         B   HPV– and cN1 

                   

C   HPV– and cN2                                                                      D   HPV– and cN3 

  

 

 

 

 

 

 

 

Low-risk group High-risk group Low-risk group High-risk group 

Low-risk group High-risk group Low-risk group High-risk group 
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Figure S9: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in cTNM stages of the entire HPV– cohort 
 
A   HPV– and cTNM I-II                                                               B   HPV– and cTNM III 

                                     

C   HPV– and cTNM IVA                                                              D   HPV– and cTNM IVB 

     
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low-risk group High-risk group Low-risk group High-risk group 

Low-risk group High-risk group Low-risk group High-risk group 
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Figure S10: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category, 
evaluated in receiving chemotherapy or no chemotherapy subgroups in the discover, TCIA test, 
and the entire cohort with known HPV status 
 
A   Patients received chemotherapy, discovery cohort                   B   Patients received no chemotherapy, discovery cohort 

 
 
 
C   Patients received chemotherapy, TCIA test cohort                   D   Patients received no chemotherapy, TCIA test cohort 

 
 
E   Patients received chemotherapy, entire cohort                          F   Patients received no chemotherapy, entire cohort 
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Figure S11: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category 
with three groups defined by tertiles of the risk scores in the discovery cohort 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low-risk group, ref 

High-risk group, HR=5.07 (95% CI 3.11–8.26) 
Medium-risk group, HR=2.15 (95% CI 1.28–3.62) 

P < 0.001 

Low-risk group, ref 

High-risk group, HR=4.16 (95% CI 2.30–7.51) 
Medium-risk group, HR=1.84 (95% CI 1.04–3.25) 

P < 0.001 

Low-risk group, ref 

High-risk group, HR=12.08 (95% CI 2.20–66.31) 
Medium-risk group, HR=2.80 (95% CI 0.51–15.37) 

P = 0.0016 

Low-risk group, ref 

High-risk group, HR=3.30 (95% CI 1.80–6.08) 
Medium-risk group, HR=1.99 (95% CI 1.06–3.76) 

P < 0.001 

A  Discovery cohort B  TCIA test cohort 

C  HPV+ and cTNM IVA  in entire cohort D  HPV– and cTNM IVA in entire cohort  



37 
 

Figure S12: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category 
with four groups defined by quartiles of the risk scores in the discovery cohort 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Risk group 1, ref 

Risk group 4, HR=6.44 (95% CI 3.55–11.68) 

Risk group 2, HR=1.79 (95% CI 0.94–3.43) 

P < 0.001 

Risk group 3, HR=3.13 (95% CI 1.69–5.80) 

Risk group 1, ref 

Risk group 4, HR=4.89 (95% CI 2.39–10.03) 

Risk group 2, HR=1.30 (95% CI 0.65–2.60) 

P < 0.001 

Risk group 3, HR=3.08 (95% CI 1.64–5.80) 

Risk group 1, ref 

Risk group 4, HR=25.20 (95% CI 2.60–244.26) 

Risk group 2, HR=3.72 (95% CI 0.39–35.84) 

P = 0.0015 

Risk group 3, HR=5.73 (95% CI 0.59–55.29) 

Risk group 1, ref 

Risk group 4, HR=4.42 (95% CI 2.16–9.04) 

Risk group 2, HR=1.06 (95% CI 0.47–2.35) 

P < 0.001 

Risk group 3, HR=1.93 (95% CI 0.94–3.97) 

A  Discovery cohort B  TCIA test cohort 

C  HPV+ and cTNM IVA  in entire cohort D  HPV– and cTNM IVA in entire cohort  
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Figure S13: Kaplan-Meier estimates of overall survival by the DeepPET-OPSCC risk category 
with five groups defined by quintiles of the risk scores in the discovery cohort 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Risk group 1, ref 

Risk group 5, HR=6.60 (95% CI 3.38–12.88) 

Risk group 2, HR=1.29 (95% CI 0.60–2.79) 

P < 0.001 

Risk group 3, HR=2.96 (95% CI 1.47–5.95) 
Risk group 4, HR=3.64 (95% CI 1.83–7.25) 

Risk group 1, ref 

Risk group 5, HR=5.44 (95% CI 2.44–12.13) 

Risk group 2, HR=0.92 (95% CI 0.43–1.97) 
Risk group 3, HR=1.72 (95% CI 0.84–3.52) 
Risk group 4, HR=3.45 (95% CI 1.74–6.84) 

Risk group 1, ref 

Risk group 5, HR=28.51 (95% CI 2.95–275.71) 

Risk group 2, HR=2.56 (95% CI 0.23–28.23) 
Risk group 3, HR=4.08 (95% CI 0.42–39.30) 
Risk group 4, HR=3.33 (95% CI 0.21–53.47) 

Risk group 1, ref 

Risk group 5, HR=3.36 (95% CI 1.57–7.18) 

Risk group 2, HR=0.37 (95% CI 0.13–1.05) 
Risk group 3, HR=1.53 (95% CI 0.71–3.29) 
Risk group 4, HR=1.26 (95% CI 0.57–2.80) 

P = 0.0003 

P < 0.001 

P < 0.001 

A  Discovery cohort B  TCIA test cohort 

C  HPV+ and cTNM IVA  in entire cohort D  HPV– and cTNM IVA in entire cohort  
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Figure S14: Relationship between the DeepPET-OPSCC risk category and the usage of induction 
chemotherapy (IC) before chemoradiotherapy (CCRT) in patients with HPV– and stage IVB 
oropharyngeal cancer in the entire cohort with known HPV status 
 
A   Patients with HPV– and stage IVB disease                               B   Patients with HPV– and stage IVB disease                                                   

and DeepPET-OPSCC high risk group  

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CCRT IC+CCRT CCRT IC+CCRT 
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Figure S15: Scatter plots of the relationship between SUVmax/MTV and DeepPET-OPSCC scores 
in the entire cohort with known HPV status (n=419). 
 
A   Scatter plots of MTV and DeepPET-OPSCC scores                  B   Scatter plots of SUVmax and DeepPET-OPSCC scores                  
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Figure S16: Time-dependent receiver operating characteristic (ROC) curves and AUCs of the 
DeepPET-OPSCC score, clinical factors, and an integrated nomogram that combines the 
DeepPET-OPSCC score and clinical factors (age, gender, with or without HPV status, cT, cN, and 
cTNM stages), to predict overall survival at 2 years evaluated on the discovery (n=268) and TCIA 
test cohorts (n=151 and n=348 with HPV and without HPV status, respectively) 
 
A AUC at 2 yr, discovery cohort with HPV (n=268)                     B AUC at 2 yr, TCIA test cohort with HPV (n=151) 

  
 
C AUC at 2 yr, discovery cohort without HPV (n=268)               D AUC at 2 yr, TCIA test cohort without HPV (n=348)  
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Figure S17: Time-dependent receiver operating characteristic (ROC) curves and AUCs of the 
DeepPET-OPSCC score, clinical factors, and an integrated nomogram that combines the 
DeepPET-OPSCC score and clinical factors (age, gender, without HPV status, cT, cN, and cTNM 
stages), to predict overall survival at 5 years evaluated on the discovery cohort (n=268) 
 
A   AUC at 5 years, discovery cohort without HPV      
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Figure S18: Kaplan-Meier analysis of the DeepPET-OPSCC risk category for the patients in the 
clinical deployment test cohort (n=31)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Low-risk group High-risk group 
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Figure S19: Time-dependent receiver operating characteristic (ROC) curves and AUCs of the 
DeepPET-OPSCC score, clinical Model, and an integrated nomogram that combines the 
DeepPET-OPSCC score and clinical factors (age, gender, cT, cN, and cTNM stages), to predict 
overall survival at 2 years evaluated on the clinical deployment test cohort 

 
The follow-up times of this cohort is 2.3 (1.3–2.8) years and thus the endpoint of 5-year survival was not 
suitable for this cohort. 
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