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Next decade will be very exciting for Al in
computer vision and machine intelligence

* Self-Driving Car Test: Steve Mahan

* At Google 1/0: New gadgets, Google glasses

* Best paper award on Kinect Human Pose Estimation using
Single Depth Images of CVPR 201 |

e ...so what we do? Reliability and performance can make a
difference


http://www.youtube.com/watch?v=cdgQpa1pUUE
http://www.youtube.com/watch?v=IK2PkSr5n3E

Image Segmentation is Semantic (thus supervised
learning is needed)!?
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Medical Image Computing in Computer-Aided
Diagnosis: A Statistical Approach

* What’s a polyp (in textbook)?
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e What’s CAD, or CADx!?

> A (hopefully) useful tool assisting Radiologists to have better performance in finding
cancer lesions (significantly higher sensitivity with manageable cost)

> Human-in-the-loop: Only radiologists have the legal right and responsibility for
clinical reports.There is no notation that lesion is found by human or machine



CT Colonography
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Outlines

e Colon CAD:

> Polyp segmentation [CVPR 08]; from polyp segmentation features [CVPR | 1] to
segmentation-less features for unified detection [NIPS |12, submitted]

> False Positive Reduction: lleo-Cecal Valve detection & removal [ECCV 08; MCV 10;
RSNA 07]; colon segmentation [MICCAI 09]; CTC Ecleansing on Weakly Tagging
Cases

e CAD Diagnosis Support:

> GGN segmentation & detection [MICCAI 09]; Lung Nodule Context Learning
[CVPR 10]; Metric Learning based Polyp Prone-supine matching; Sparse
Classification [MICCAI | |]; Coarse-to-fine Classification [CIKM 2]

e Others (full-body image parsing):

> Vertebra segmentation & identification [MICCAI 10]; Hierarchical curvature
structure parsing: with application on coronary artery tree modeling [ICCV 09];
flexible structure parsing and segmentation based labeling ...



Multistage Probabilistic Polyp Segmentation
(CVPR’08)

(d) | | (f)

Diagnosis purpose: helping radiologist to decide whether finding is true;
and cancer staging; can be shown in CTC visualization



0: CAD-input or manual input




l: Polyp Tip Finding by Detection

3D Point-detector
(with probability
output)

Grouping by
Connected
Component Analysis

Geometric centroid
on surface

Probabilistic spatial
prior

Learned usin (a)
thousands of boosted
low-level steerable
image features in
intensity, gradient,
curvature ... & their
polynomial
expansions in
multiscale via PBT




|.5: Marching-cubes & Polar-coordinates




ll: Polyp Interior-Exterior Detection

o Multiscale 7X7X7 sampling patterns with tens of thousands image
features, 81 features for each grid



lll: Boundary Classification via Robust Curve Parsing (Bi-
partitioning by Stacked Learning), or regression?

Output probability array of interior palyp matenal class alang one axis of palar coordinates
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e 440 curve parsing features for boosting which captures full-range
interactions for more complex statistical patterns



IV: Compositional Model & Multistage Learning (stacked
generality)

* Smoothness: Gaussian,Viterbi-like Dynamic Programming, Loopy Belief-
Propagation



Polyp Segmentation Flow-chart

{

Contextual Subvolumes Bounding Centered at Automatic
Polyp Detections or Iteractive Clinician’s Clicks

.

1: Polyp Tip Detection Using Clustering over PBT
Learning of Gradient Profiles

!

Generating Colon Surface by “Marchcubes”

}

Fitting Local Polar Coordinates (Centered at Polyp Tip
Detected) covering Polyp Surrounding Colonic Surface

:

2: Polyp Interior Box-Voxel Detection using PBT
Learning of Steerable Features

v

3: Polyp Surface Boundary Detection using PBT
Learning of Curve Parsing Features

{

Polyp Boundary Smoothing using Contextual
Information Propagation

!




The Power of Compositional Model

* Break-down:The Dual of low-dimensional training & more training samples
(Trainability)

e Assembling: new polyp instances can be assembled from different basis
curves (lower-dimensional feature/primitive sharing for Generality)

» Surface Representation Versus a Pencil of Curves Representation



Generality & Accuracy (of Supervised Segmentation)

Comparison of Ground Truth versus Measurement of Polyp Size
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e Testing-in-the-wild: The most accurate polyp segmentation method based on
large scale unseen data validation: ~2.22mm average error versus 2.54mm error
from the regressed polyp size measurements [CVPR’I |], trained using all polyp
detection features (400+), in unseen tagged-prep datasets (358 polyps >= 3mm).



Probabilistic Polyp Segmentation Features for Detection
& Size Regression (CVPR’I |)




Flowchart or Workflow (stratified or interleaved?)

VOI Input

<

(Supervised) Object
Segmentation

<

Probabilistic Object
Segmentation Map

Figure 1. Flow-chart of the staged object/polyp segmentation, clas-
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sification/detection, and size/importance regression process.




Probabilistic Polyp Segmentation Features for
Detection (CVPR’| |)

What exactly PSM features are:

1) Statistics of polyp dimensions and class-specific probabilities, their
polynomial expansions [to fit linear classification]

2) Multi-resolution object-class polyp boundary smoothness [Gestalt
Perception Law, most discriminative!!]

3) Spatially banded class probability and area statistics [multi-resolution
shape context [Belongie’01], related to [Yao’09]]

4) 3D Ellipsoid Shape Descriptor [shapeness]

5) Multiscale Intensity Histogram Features [extendable to 3D rotation-
invariant HOG, effective to tagged stool versus stool coated polyp]

6)

**Proposing sensible image features is an open and probably more heuristic
“art” in studying related subjects. By augmenting the class-conditional
prob-maps with intensity images, there are more work to be done ...
General computer vision has a lot of work ... auto-tuning, auto-learning,
transformation-invariance build-in; .


http://www.vlfeat.org/

Results
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Figure 4. Size-based soft-gating classification framework (a) and FROC curves of polyp detection using size-gating classification tree with
PSM features incorporated, on two polyp subcategories of 80 (142 in volume-level) Sessile-Pedunculated (b) and 50 (89 in volume-level)
flat polyps (c). Green dot lines are the CG sensitivity upper bound and FROC curves are shown in Blue.

e The best FROC results reported in literature by then. By injecting PSM features into the branch
node and leaf nodes building, the sensitivity system levels increase 7~8%, at similar FP rates per
patient. 95% sensitivity for SP polyps, and 88% for flat polyps @ 3.36FP/vol.

e The art of hierarchical probabilistic discriminative (PHD) learning.



Mumber of examples

*Power of Inductive Information/Feature Fusion®

Kemsl Density Estimate [Fisher Discriminant=1.003480] ; Kemel Density Estimate [Fisher Discriminant=1.241236]
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Segmentation-less features & extension to Lung
CAD (nodule versus vessel, NIPS 2012, submitted)

* Generic probabilistic voxel labeling & thresholding

» Simplified, Summarizing response features in joint space

* Almost effective as PSM features in detection performance, not size
estimation

e Curvature is important for polyps, but not significant for nodules (a
joint appearance model for solid, partial-solid and GGN)

e Tunable to make weak class work better, e.g.,, GGN, partial-solid,
flats, small lesions by balancing and twisting the empirical
distributions of training



Discussion & Thoughts

Geometric or Probabilistic Process? A variety of drastically different techniques have been pro-
posed for lesion detection feature computation. However, most previous work [4,7,11, 18-20, 31,
32,35-37] focus on extracting low-level, directly observable surface geometry and volumetric in-
tensity features: as geometric descriptors (mostly curvature based) to describe the degree of sat-
isfying the sphericity polyp shape assumption [11, 20, 37], segmentation or geometric protrusion
based polyp occupancy measurements [32], fuzzy clustering and deformable model [35], and inten-
sity features (as mean, median, maximum, minimum, etc.) [31] or Hessian statistics [23] for polyp
detection. [4,7, 18, 19, 36] all address nodule shape morphology modeling versus other structures.
In our work, geometry and intensity information are first encoded into the voxel labeling process
through PBT learning. Then translation and rotation invariant visual features are computed summa-
rizing the joint distribution of intensity and learned lesion-class probability.

Data-driven Learning: Probabilistic approach of modeling the shape differences between polyps
and other colonic surface structures is exploited [17]. Similarly, [19] discuss its counterpart in nodule
detection. However, these method strongly depends on the validity and generality of the restricted,
parametric prior assumptions from medical literature which often does not reflect well the image
noise and appearance variations in real hospital scale datasets. Their predefined models are also
difficult to be tuned from a data-driven perspective. Consequently, they report significantly inferior
performance results on very limited datasets of 36 volumes and 24 polyps [17] and 50 volumes with
60 solitary solid nodules [19]. Our feature computation is learned from a large radiologist annotated
image database in both colon and lung CAD. Compared with our work, [17, 19] fail to capture the
complex, high-dimensional and multi-modal underlying feature distributions that a common CAD
system deals with a large screening patient population, cross races and demographies.



False Positive Reduction:What’s lleo-cecal Valve?

* |leo-Cecal Valve can present with
bumpy, polyp-like sub-structures

* Importance:a CAD system can
mistakenly detect those bumps —
resulting in polyp false-positives (FPs),
up to 15~20% (really hard ones!!)

* Previous approach: Summers et al.
2004, Radiology — technique not fully
automatic;

*Recent approach:Ye & Slabaugh:
Concavity analysis for reduction of
ileo-cecal valve false positives in

CTC,ISBI 201 1.

*Detect “Forest of trees”, object
detection scale!



lleo-cecal Valve Detection (ECCV’08)

(c) (d)

() (h)
Quantitative Evaluation: 90~92% detection rate for unseen data (trained on
clean; validated on clean and tagged) under PASCAL Detection Standard.

(f)



System Flowchart: Prior Learning & Incremental Parameter
Learning (Marginal Space Learning in full 3D for highly
deformable objects under possible severe tagging artifacts)
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ICV Orifice Detection by 3D Point Detector

!

ICV Orientation Alignment by 3D Box Detector

I

ICV Position Detection by 3D Box Detector

b

ICV Scale Detection by 3D Box Detector

v

ICV Orientation Detection by 3D Box Detector
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Extension: MICCAI-MCYV 2010 (90% CAD detection
performance gain on FP reduction with |% extra effort on
multi-component parsing)




Extra-colonic Removal, or Supervised Colon Segmentation (MICCAI'09)

Good value for CTC visualization as well!



Daisy-Chaining & Adaptive Confidence Level




Results

* Colon Fragment “Classification + Tracing” (supervised
learning formulation, apart from heuristic topological
reasoning in literature)

e Colon Segmentation Evaluation:

> Our ECR module enables to remove > 90% or higher extra-
colonic volumes (mm?), at the detection rate of 99.5%, for
training or testing datasets respectively.

o Better accuracy than previous work on (>5 times) larger
dataset.

e Impacts on CAD False Positive Reduction:

° |t results in sensitivity of 77/89 = 86.5% (Extra-Colonic FPs) and
specificity as (147-3)/147 = 98%, which conforms the same
system detection rate at significantly lower FP rates (~45% low
using as post-filter).

o “Simple geometry feature + statistical modeling (rank-1 SVM)”
generalizes well to clean-prep and tagging-prep datasets.

> Find an error in radiologist’s annotation!



A New Algorithm Paradigm for Weakly Tagging Ecleansing

(a) (b) (c) (d)
Fig. 2. Fxamples of E-cleansing results: original volume rendering (Top ), generated by
an implementation of GMM-EM method [7] (Middle) and our method (Bottom ).



Outlines

e Colon CAD:

> Polyp segmentation [CVPR 08]; from polyp segmentation features [CVPR | 1] to
segmentation-less features for unified detection [NIPS |12, submitted]

> False Positive Reduction: lleo-Cecal Valve detection & removal [ECCV 08; MCV 10;
RSNA 07]; colon segmentation [MICCAI 09]; CTC Ecleansing on Weakly Tagging
Cases

e CAD Diagnosis Support:

> GGN segmentation & detection [MICCAI 09]; Lung Nodule Context Learning
[CVPR 10]; Metric Learning based Polyp Prone-supine matching; Sparse
Classification [MICCAI | |]; Coarse-to-fine Classification [CIKM 2]

e Others:

> Vertebra segmentation & identification [MICCAI 10]; Hierarchical curvature
structure parsing: with application on coronary artery tree modeling [ICCV 09];
flexible structure parsing and segmentation based labeling ...



Ground-glass Lung Nodule Segmentation & Detection
(MICCAI'09) iterated auto-context

(b) Three Views of Probability Map (b) Three Views of Probability Map

(c) Rendered of Segmented Result (c) Rendered of Segmented Result

Partially inspired by “A Two Level Approach for Scene Recognition”, Lu, Toyama & Hager, CVPR 2005.
Tu, Z.: Auto-context and its application to high-level vision tasks. In: IEEE Conf. CVPR, pp. 1-8 (2008)



System Flowchart
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Nodule Attachment Attributes Classification
(CVPR’10)

SUCCESS: WALL 16954 (42,1,1




Results on Nodule Segmentation from Graph-cut
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Less acceptable or failed cases
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True Positive Rate (sensitivity)

o

Experiment Results
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Original 0.7793 0.9184 0.7555

Masked 0.8676 0.9275 0.8318

* RVM, 10-fold cross validation



Metric Learning Approach for Prone-Supine Polyp Matching
using Local Features (MICCAI'l ])

Counter-intuitive thinking can be important, even critical!



Flow Chart for Training (testing is just a Mahalanobis
distance computing and ranking!)

minimum redundancy

polyp matching

polyp retrieval
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e Important influence on the current CTC clinical workflow: our
technology is an enabler to make polyp matching more feasible
without ﬁlobal colon geometry computing. Only local CAD features
are utilized for training (which is sufficient), and no extra computational
overhead, fully automatic and with tremendous improvement on
robustness (via learning cross data population).

e Polyp matching becomes feasible for collapsed CTC cases (>= 50%)
where traditional ways do not apply...



Polyp Matching as a Retrieval Problem (Testing)
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Normalized Retrieval Rate (Testing)

Testing dataset
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Coarse-to-Fine Classification:VWhat’s the STORY?
[MICCAI 201 I, CIKM 201 I]

 Three Requirements:

> High sensitivity (recall) is a must-to-have feature to make CAD
meaningful.

° |t is equivalently important to archive sensibly low false positive rate
per case (e.g., 2~5, or lower).

> Decision Support: an ideal setup is to make the system capable of
storing and retrieving similar or counterpart lesions when available. 2
Nonparametric (fine-level) Methods!

¢ Two Challenges (where and how to apply NP methods):
> There are dominating numbers of false positives initially;

> NN and TM are very sensitive to the feature space or subspace where
matching distance or (dis-)similarity metrics are computed (or
generally, distance metric learning).

> Note: Natural extensions to multiclass problem may be ideal by NP methods, which may be useful
for polyp/nodule/lesion categorization!



lllustrative Example




“The paper is well-written and therefore easily accessible. It did unfortunately shoot down an idea I'd had recently by
pointing out that something similar is already out there :) The motivation for the problem setting and the choices for the
different steps is clear and sensible.”




Coarse-to-Fine Classification

e Coarse-Level

> RVMMIL to get classifier score;according to the classification score to select
only those passed a threshold testing for the next step (samples close to
classification boundary, or positives + negatives hard to dismiss); this step can be
done by other type of parametric classifiers or even nonparametric ones. Very high
sensitivity and high false positive rate!!

e Fine-Level

> Refine the feature set using MRMR;+ Extract the intrinsic feature space using
dimension reduction, (CIKM 201 1)

o Finally perform various (parametric, or non-parametric, e.g., KNN, template
matching) classification methods in the intrinsic feature subspace.

> Or, Learn data-driven dictionaries as templates by solving SPARSITY Coding
problem (MICCAI 201 1)

** Features for Learning are heterogeneous, statistically strong middle-level
features which are already aggregated from 10~20 low-level image parsing
processes and suitable for more sophisticated feature selection & learning. For
learning thousands of low-level images on millions of training samples, boosting!



Coarse-to-fine Cascade Classification (C3)

» For validation, the testing results demonstrate that our CTF method can
increase the sensitivity of RVMMIL by 2.58% (from 0.8903 to 0.9161) at
the per-patient FP rate = 4, or reduce the FP rate by 1.754 (from 5.338 to
3.584) when sensitivity is 0.9097, which are statistically significant
improvements for colorectal cancer detection. (polyps >= 3mm)

Samples [—| Sample pruning | —| Feature selection

—| Class regularized graph embedding

—| kNN /Template matching




Results: Colon Polyp Classification (close-up)
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Discussion on Stratified Approach versus Joint Sparse
Optimization and SYM-KNN

FROC on Lung Nodule Classification
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e D. Cai, X. He, and J. Han. Sparse Projections over Graph. Proceedings AAAI Conference on

Artificial Intelligence, pages 610-615, 2008.

e H.Zhang,A. Berg, J. Malik, SVM-KNN: Discriminative Nearest Neighbor Classification

for Visual Recognition, IEEE CVPR, 2006.



Importance of Having a new Idea (sparse coding
based Classification)...

Partial-Solid Nodule Detection Performance Comparison
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http://www.cs.jhu.edu/~lelu/publication/MICCAI_SparsityCAD_2011.pdf

Generalizable to Colon datasets ...

Overall Colon Polyp Detection Performance Comparison
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Outlines

e Colon CAD:

> Polyp segmentation [CVPR 08]; from polyp segmentation features [CVPR | 1] to
segmentation-less features for unified detection [NIPS |12, submitted]

> False Positive Reduction: lleo-Cecal Valve detection & removal [ECCV 08; MCV 10;
RSNA 07]; colon segmentation [MICCAI 09]; CTC Ecleansing on Weakly Tagging
Cases

e CAD Diagnosis Support:

> GGN segmentation & detection [MICCAI 09]; Lung Nodule Context Learning
[CVPR 10]; Metric Learning based Polyp Prone-supine matching; Sparse
Classification [MICCAI | |]; Coarse-to-fine Classification [CIKM 2]

e Others:

> Vertebra segmentation & identification [MICCAI 10]; Hierarchical curvature
structure parsing: with application on coronary artery tree modeling [ICCV 09];
flexible structure parsing and segmentation based labeling ...



Hierarchical Vessel

Structure Parsing
(ICCV’09)

3D Plot of RCA, LAD and LCX Coronary Arteries from 82 Patients 3D Plot of RCA, LAD and LCX Vessel Segments (Detected) from 82 Patients
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]
: 3D Vessel Curves (Arrays of 3D Coordinates) :

EPPTPPPE PP PPP PP PP PP PPPPPPPTTT

Compute Distance and Geometric Features I

L]
: 3D Vessel Curves (Arrays of kD Features) :
---------------*----------------
Probability Density Model Fitting I

.

.-'-‘-'-------------.-.------.-‘

: 3D Vessel Curves (Arrays of 1D Probabilities) :
i

Classification of Vessel Segments

Vessel Segment Set-Expansion |

%

Inter- & Intra- Vessel Segment Smoothing

Y

Compute Global Goodness Metric & Select
Optimum Vessel Curve per Volume

l

v

What | learned in class helps, and more!

D. Geman and B. Jedynak.
An active testing model
for tracking roads in
satellite images. IEEE
Trans. Pat. Anal. Mach.
Intell., 18:1-14, 1996

S. Konishi,A.Yuille, J.
Coughlan, and S. Zhu.
Statistical edge detection:
Learning and evaluating
edge cues. |IEEE Trans. Pat.
Anal. Mach. Intell., 25:57—
74,2003.

‘“on-off” likelihood
ratio testing; sequential
testing, ...CTF detection
on Geodesic distance-
indexed local
geometry features!

Generative models
versus Discriminative
models



Structure Alignment for Learning (Training)

e Annotated Curves versus Computer Extracted Curves
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Set—Expansion by Bipartiticning onC IC Vessel Segment
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The Art of Low-level Learning (How Greedy You
Can be!?, Bias versus Variance!!

Plot of p Curves using KDE/Histogram ,]instogramszVM
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Patient-level accuracy and performance

Plot of Vessel Eegmentatlcn Accuracy Dlstrlhutlcns over Patlents
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Vertebra Segmentation & ldentification (MICCAI'10)




Methods Overview

O Vertebrae Segmentation
° Learning-based edge detector
> Hierarchical deformation scheme

> Convergence field (enforced at bony structure for
robustness of alignment)

O Vertebrae ldentification
> Mean Shapes
> Single vertebra identification
> Vertebrae string identification



System Flowchart

Part Deformation (Articulated Moves
with Learning-based Bone Edge
Response Evaluation)

Run 3 times!

Mesh Gaussian Smoothing

Patch Deformation (Normal Moves
with Learning-based Bone Edge
Response Evaluation)

One Round of Learning-based Bone
Edge Response Evaluation based on
Aligned Surface

Run 4 times!

Mesh Gaussian Smoothing




Surface template generation (training phase)

Original 3D
CT image

=

Pre-
processing

Manual
segmentation

=

Surface
generation




Edge response map

»Generate response map by learned edge detectors
- optimally combine image features to detect object-specific edge
- more discriminative and robust
- Indicates edge likelihood (probability map)
- Informative but noisy

»Hierarchical deformation strategy
- Sub-region deformation
- Patch deformation
- Individual vertex deformation




Sub-region deformation

Sub-region deformation
= Divide the surface to 12 subregions
= Vertices in the same subregion deform together as a team

» Rigid transformation with the strongest “edge ” likelihood is the target
position.

CalculaMardspanse spamsegoosition



Patch deformation

Patch deformation

= Move a patch to a number of
positions along its normal
direction, and calculate the
responses at these positions.
Position with strongest response
IS the target position.

Individual vertices deformation

= Move each vertex to a position
with highest edge likelihood

Calculatt|eeapoins eegppbrsposition



Segmentation Accuracy Results

Tl T2 T4 'E5 Te TF¥ T8 TO T1D TLil Fl2

mean error (mm) [1.05 1.11 1.03 0.93 0.99 0.92 0.83 0.75 0.89 0.79 0.94 1.21
std deviation(mm)|0.96 0.97 1.04 1.03 1.31 0.92 0.56 0.59 0.68 0.50 0.63 1.16




|dentification: framework

Which has

Compute mean ‘ Mean shape ‘ Compute
maximum response

shapes to new image response




Mean shapes

The segmentation method is applied on 40 CT volumes

Surface meshes of thoracic vertebrae are obtained

Vertex correspondence across meshes are directly available
Mean vertebrae shapes are computed (four-fold cross validation)




Results (compared favorably with the state-of-the-art!)

success rate

identification success rates for single vertebrae

0.8 ~

0.6

0.4 -

0.2 ~

Tt T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
vertebra

success rates

0.8 1

0.6 1

0.4 1

D2 1

identification successrates for vertebra string

1

2: 3 4 & 6 7 8 92 0OMN
length of string

individual success rates

string success rates

Zhan, Zhou, Salganicoff, Krishnan, MICCAI 2010 (Oral)

, Ma, Lu,



http://www.cs.jhu.edu/~lelu/publication/MICCAI-Vertebra-2010.pdf

Flexible Structure Labeling & Masking
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Supervoxel graph, weakly supervised learning, regional
recognition & feature description, classifier fusion ...
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Short Messages

Trend of more merging activities of modern computer vision and medical image understanding
& semantic imaging = MICCAI/CVPR MCV workshops

Computer vision can help though non-trivial (no silver bullet)!!

Image or Visual Representation is equally important, if not more, to algorithms in computer
vision and medical imaging (art side of computer vision). = better understanding of the
problem!

It is not all about science, but science-guided arts!

Statistical, principled quantitative systematic performance progression!! How | can do better
than yesterday, stochastically guaranteed?

Better image structure encoding and full-range <Image-Image>; <Image-Text> Context Learning
—> Full Body Imaging/non-Imaging (image data, annotation & clinical reports) Parsing = NLP,
talking pictures in CVPR ...

CAD 2.0??

Go Cloud! CAD-S and what will change the algorithm and data!?
> Never do something cheap!?
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* Video on Depth based object tracking...

e Make dirty, difficult things work!

e Enable radiologist’s experience, knowledge,
vision & insights to be computable reliably, in a
high performance setting!



