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ABSTRACT
◥

Purpose: Accurate prognostic stratification of patients with
oropharyngeal squamous cell carcinoma (OPSCC) is crucial.
We developed an objective and robust deep learning–based fully-
automated tool called the DeepPET-OPSCC biomarker for predict-
ing overall survival (OS) in OPSCC using [18F]fluorodeoxyglucose
(FDG)-PET imaging.

Experimental Design: The DeepPET-OPSCC prediction
model was built and tested internally on a discovery cohort
(n ¼ 268) by integrating five convolutional neural network
models for volumetric segmentation and ten models for OS
prognostication. Two external test cohorts were enrolled—the
first based on the Cancer Imaging Archive (TCIA) database
(n ¼ 353) and the second being a clinical deployment cohort
(n ¼ 31)—to assess the DeepPET-OPSCC performance and
goodness of fit.

Results: After adjustment for potential confounders, DeepPET-
OPSCC was found to be an independent predictor of OS in both
discovery andTCIA test cohorts [HR¼ 2.07; 95% confidence interval
(CI), 1.31–3.28 and HR¼ 2.39; 95% CI, 1.38–4.16; both P ¼ 0.002].
The tool also revealed good predictive performance, with a c-index of
0.707 (95% CI, 0.658–0.757) in the discovery cohort, 0.689 (95% CI,
0.621–0.757) in the TCIA test cohort, and 0.787 (95% CI, 0.675–
0.899) in the clinical deployment test cohort; the average time taken
was 2minutes for calculation per exam. The integrated nomogram of
DeepPET-OPSCCand clinical risk factors significantly outperformed
the clinical model [AUC at 5 years: 0.801 (95% CI, 0.727–0.874) vs.
0.749 (95% CI, 0.649–0.842); P ¼ 0.031] in the TCIA test cohort.

Conclusions: DeepPET-OPSCC achieved an accurate OS pre-
diction in patients with OPSCC and enabled an objective, unbiased,
and rapid assessment for OPSCC prognostication.

Introduction
Oropharyngeal squamous cell carcinoma (OPSCC) is frequently

associated with human papillomavirus (HPV) infection (1). However,
there are significant differences in 5-year overall survival (OS) rates
between HPV-related (HPVþ) and tobacco- and alcohol-related
(HPV–) cases (75%�80% vs. 45%�50%, respectively; ref. 2). Recent
years have witnessed a growing interest in less-intensive treatment
approaches for HPVþOPSCC, with themain goal of reducing toxicity
while maintaining comparable disease control rates (3, 4). However,
there is still insufficient evidence to recommend de-intensified treat-
ment protocols owing to the risk of less favorable outcomes (5, 6).
Moreover, these de-escalation therapies depend on patient response to
induction chemotherapy (7, 8), which remains unpredictable, partic-
ularly in the pretreatment phase (9). More worryingly, there remains a
paucity of effective therapies for patients with HPV– OPSCC (3),
although a few enhanced therapies for such patients have been
investigated (10). In this scenario, novel operator-independent risk
stratification tools are eagerly awaited to facilitate and optimize clinical
trials by identifying specific patient subgroups who are more likely to
benefit from novel therapeutic approaches. This would ultimately
make the treatment of OPSCC more personalized and reduce unnec-
essary morbidity (11, 12).

As for HPVþ OPSCC, PIK3CA mutations have been associated
with less favorable disease control in de-escalation trials (13). On the
contrary, TRAF3 and CYLD losses have been reported to portend a
favorable prognosis (14).With regard toHPV– cases,mutations in p53
have been associated with poor outcomes (15).Moreover, ameasure of
intratumor genetic heterogeneity (termed quantitative mutant allele
tumor heterogeneity) has been linked to unfavorable outcomes (16).
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Despite intense research on the ability of these tools to comprehen-
sively capture the molecular underpinnings of head and neck
malignancies, these biomarkers have not yet been implemented in
clinical practice. Compared with tissue-based biomarker testing,
algorithm-guided medical imaging features have inherent advan-
tages in terms of being real-time, noninvasive, independent of
sampling bias, and not limited to the portion of tested tissue (17).
Although radiomics—defined as high throughput extraction of
quantitative imaging features—has been successfully used for pre-
dicting prognosis in OPSCC (18–21), its reproducible application in
everyday practice is limited because of its dependence on manual
segmentation and handcrafted features (17).

Deep learning–based artificial neural networks comprise algo-
rithms and techniques that enable computers to identify complex
patterns in large data sets without resorting to handcrafted feature
extraction. In human cancer imaging, deep learning approaches
have increasingly been applied to different steps of the entire
workflow (22–24). Although rapid technical advances are furthering
the application of deep learning in cancer prognostication based on
image data (25–28), their implementation in clinic practice remains
a major hurdle. Among the methodologic barriers, the reliance on
manually selected two-dimensional (2D) slices and manual seg-
mentation (which have a significant adverse impact in terms of
reproducibility), the failure to account for traditional risk factors,
and the limited sample sizes without ethnic diversity are major
obstacles for translation.

The objective of this study was to develop a scalable, objective, and
robust deep learning–based fully-automated tool—termed DeepPET-
OPSCC biomarker—for predicting OS in patients with OPSCC using
[18F]fluorodeoxyglucose (FDG)-PET imaging. DeepPET-OPSCC—
which integrates an automated three-dimensional (3D) deep segmen-
tation model with a deep learning Cox model—was subsequently
tested in an international multicenter study to validate its applicability
and generalizability regardless of potential confounders.

Materials and Methods
Study design

This international retrospective study included three patient
cohorts: a discovery cohort, on which the best-fitting prediction
models were built and tested internally, and two external test cohorts,

on which performance and goodness of fit were assessed. Inclusion
criteria were as follows: (i) nonmetastatic (M0) OPSCC and absence of
other concomitant malignancies, (ii) availability of baseline pretreat-
ment PET images covering the head and neck region, (iii) treatment
with curative intent, and (iv) follow-up continued for at least
18 months or until death. Patients without identifiable tumors on
PET/CT scans were excluded.

All patients in the three cohortswere staged according to the seventh
edition of the American Joint Committee on Cancer (AJCC) staging
system. Details are available in the Supplementary Protocol (Sections 1
and 4).OS—whichwas defined as the time fromcancer diagnosis to the
last follow-up or death from any cause—served as the main outcome
measure. Ethics approval for the retrospective review of imaging and
clinical data was received from the local ethics committees for the
discovery and test cohorts. The need for informed consent was waived.
This study was conducted in accordance with the Declaration of
Helsinki.

Discovery cohort
The discovery cohort included 268 patients who had been treated

between June 2006 and December 2017 at the Linkou Chang Gung
Memorial Hospital (CGMH). The CGMH database contained com-
plete information on demographics, clinical characteristics, and ther-
apeutic procedures of each patient and was, thus, selected for model
development. FDG-PET/CT images were acquired using either GE
or Siemens scanners, within a median of 9 [interquartile range (IQR)
3–14] days from the pathologic diagnosis. HPV status was ascertained
using p16 IHC. According to the CGMH treatment policy, OPSCC
patients were treated with concurrent chemoradiotherapy (CCRT),
whereas those in T1–T2 stages with no nodal metastasis received
radiotherapy or surgery. Patients with advanced-stage OPSCC in a
prospective clinical trial received induction chemotherapy, followed by
CCRT (IC þ CCRT).

External test cohorts
The first test cohort consisted of 353 patients with OPSCC from

Western countries. The Cancer Imaging Archive (TCIA) public
database was thoroughly queried for PET image data and clinical
information of patients who had been treated between October 2003
and November 2014 at six centers (Hôpital G�en�eral Juif, Centre
Hospitalier Universitaire de Sherbrooke, Hôpital Maisonneuve-Rose-
mont, and Centre Hospitalier de l’Universit�e de Montr�eal, Canada;
University of Texas MD Anderson Cancer Center, USA; MAASTRO
Clinic, the Netherlands). The HPV status, which was available for 44%
of the cases, was ascertained by in situ hybridization or p16 IHC.Most
patients received CCRT treatment, whereas others were treated with
either single or combined modalities, for example, surgery, radiother-
apy, induction chemotherapy, or cetuximab.

The second test cohort included 31 patients with OPSCC from an
Asian country. We enrolled patients who had been treated between
April 2011 and March 2019 at two hospitals [First Affiliated Hospital
of Zhejiang University (ZJU1) and Nanfang Hospital, China] with
available baseline PET imaging. Except for oneHPV case (based on the
results of p16 IHC), the HPV status was unknown for all patients. The
study patients were treated with surgery, CCRT, or both. The complete
model was locked before deployment in ZJU1.

DeepPET-OPSCC discovery and internal testing
Nested cross-validation

Figure 1A summarizes the discovery and internal testing of
the DeepPET-OPSCC prognostic biomarker, which comprises

Translational Relevance

Although rapid technical advances are furthering the applica-
tion of deep learning in cancer prognostication based on imaging
data, the reliance onmanually selected slices and segmentation, the
failure to account for traditional risk factors, and the limited sample
sizes without ethnic diversity are major obstacles for translation
into the clinic. Using data from [18F]fluorodeoxyglucose (FDG)-
PET imaging, we devised the first deep learning–based fully-
automated tool for predicting overall survival in patients with
oropharyngeal squamous cell carcinoma. Our tool revealed a
robust performance across different geographic regions, PET
scanners, and treatment protocols in a large, international study.
On the one hand, such an approach enables an objective, unbiased,
and rapid assessment that is suitable for clinical prognostication.
On the other hand, the use of our biomarker has the potential to
tailor treatment at the individual level.
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five PET image segmentation models and ten prognostic models
(Supplementary Protocol Sections 2 and 3). All models were trained
in the discovery cohort using nested five-fold cross-validation, with
64%, 16%, and 20% of the data as the training, validation, and test sets

at each repeat time (one fold), respectively. The same data-splitting
approach was used for segmentation and prognosis. This technique
was implemented to avoid the overoptimistic issue inherent to con-
ventional cross-validation, as individual DeepPET-OPSCC scores in

Figure 1.

Flowchart for discovery and external testing of the DeepPET-OPSCC prognostic biomarker. A, The DeepPET-OPSCC biomarker consists of five UNet segmentation
models and ten convolutional Cox (ConvCox) prognosticmodels. All models were trained by nested five-fold cross-validation in the discovery cohort, with 64%, 16%,
and 20% of all data considered as training, validation, and test sets for each repeat time (one fold), respectively. For each fold, 3D SUV images and the corresponding
manual masks were used to train and validate a UNet model, whichwas subsequently applied to the test set to segment the tumor and lymph nodes. Based on these
results, the N-T distancemapswere generated. Thereafter, 3D regions-of-interest and the correspondingOS time and statuswere used to train and tune two distinct
ConvCox models: (i) a DeepPET-OPSCC-T model with two input channels (SUV and tumor mask), and (ii) a DeepPET-OPSCC-TN model with three input channels
(SUV, tumor mask, and N-T distance map). The optimal ConvCox models were subsequently tested in the test set to predict risk scores, thereby reflecting the
probabilities of less favorable OS. Upon completion of five folds, DeepPET-OPSCC scores were obtained for all data in the discovery cohort for the purpose of the
internal test setting. B,Architecture, input, and output of the 3D ConvCox network in the DeepPET-OPSCC-T/-TN prognostic models. C, For external testing, the five
UNet and ten ConvCoxmodels were integrated to generate the DeepPET-OPSCC score. Themedian value of all DeepPET-OPSCC scores in the discovery cohort was
used as the cutoff threshold to classify patients as being at high versus low risk. -T1, DeepPET-OPSCC-T model 1; -TN1, DeepPET-OPSCC-TN model 1.
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the discovery cohort were obtained in the setting of internal testing
(i.e., test sets in the nested cross-validation) with automated
segmentation.

Segmentation models
All PET image volumes were converted to standardized uptake

values (SUV)maps/volumes. For generating annotations of tumor and
lymph nodes in the discovery cohort, volumetric delineation was
performed semiautomatically by an experienced nuclear radiologist
(N.-M. Cheng), with 14 years of experience in nuclear imaging and
image processing. The segmentation models were built upon the 3D
version of nnUNet (29), with extensive data augmentation for improv-
ing generalization performance (30). The full description is provided
in Supplementary Protocol (Section 2).

Prognostic models
The prognostic models were trained on three types of 3D region-of-

interests [i.e., SUV map, automatically segmented tumor mask, and
node-to-tumor (N-T) distance map; Fig. 1B] using OS time and
patient status (alive vs. dead) as labels. The N-T distance map was
included as a region-of-interest type because nodal metastases to the
lower neck reflect spread to more distant sites and are associated with
reduced OS (2, 31). The prognostic model consisted of 3D convolu-
tional neural networks that relied on the Cox proportional hazards
assumptions (ConvCox; ref. 32). Nonlinear associations between 3D
images and time-dependent censored OS were directly modeled. The
architecture (Fig. 1B) and implementation of our ConvCox network
are detailed in Supplementary Protocol (Section 3.2).

The following schemewas adopted to train the prognosticmodels in
each of the five folds. For each fold, we separately trained (with
extensive data augmentation) two distinct ConvCox models: (i)
DeepPET-OPSCC-T with two input channels (concatenating SUV
and tumor mask), and (ii) DeepPET-OPSCC-TN with three input
channels (concatenating SUV, tumor mask, and N-T distance map).
Given that there is more variability in the appearance image (N-T
distance map) as compared with that in the binary image (tumor
mask), the deep learningmodelmay not capture adequate information
in the tumor mask. Therefore, to allocate sufficient network capacity
for adequately and comprehensively capturing both tumor and lymph
node information, we trained the two models separately. The optimal
ConvCox models were selected in the validation set based on the
highest Harrell’s concordance index (c-index; ref. 33) and subsequent-
ly tested in the test set. The predicted risk score reflecting the
probability of less favorable OS in each test set was normalized by
subtracting, for each fold, the mean risk score in the training set. The
final continuous DeepPET-OPSCC score was calculated by averaging
the DeepPET-OPSCC-T and DeepPET-OPSCC-TN scores. The
nested cross-validation process was repeated five times, thereby yield-
ing five DeepPET-OPSCC-T and five DeepPET-OPSCC-TN models.

To determine the DeepPET-OPSCC risk category (i.e., dichoto-
mized into high vs. low risk), themedian value of all DeepPET-OPSCC
scores obtained in the test sets was used as the cut-off threshold.
Further, the continuous DeepPET-OPSCC score was categorized into
three, four, or five risk subgroups using tertiles, quartiles, and quintiles,
respectively, of the total risk scores.

External testing
For external testing (Fig. 1C), the models trained for segmentation

and OS prediction were integrated into the UNet and ConvCox
ensemble models, respectively. Further, the ten DeepPET-OPSCC-
T/TN normalized prediction scores were averaged to obtain the final

DeepPET-OPSCC score, which was subsequently dichotomized to
obtain the DeepPET-OPSCC risk category based on the previously
determined cutoff threshold from the discovery cohort.

Visualization
A renormalized class-activation heatmap was used to visualize/

highlight tumor and nodal areas associated with unfavorable OS. Our
heatmap represented risks at both the voxel and patient levels for
facilitating the visual interpretation of the local and global risks. The
heatmap value of each voxel directly reflected its predicted risk score.
The heatmap values of all voxels were renormalized to [0, 1] based on
the maximal and minimal values in the corresponding training set.

Comparison with other computational approaches
To compare our method to other computational prognostic

approaches, we developed three distinct tools—lightweight 3D
ResNet-OPSCC (designed for insufficient training data), 2D Deep-
PET-OPSCC (using the largest tumor and lymph node slices as
network input), and a radiomics signature that reflected both tumor
and nodal characteristics—which were trained and assessed as Deep-
PET-OPSCC (Supplementary Protocol Section 3.5).

Research reproducibility
The major components of our tool have been made available in

open-source repositories and libraries, including PyTorch (https://
pytorch.org/), nnUNet (https://github.com/MIC-DKFZ/nnUNet),
and SALMON (https://github.com/huangzhii/SALMON). All exper-
imental and implementation methods have been also described in
sufficient detail (Supplementary Protocol) to enable independent
replication by other researchers. The trained prognostic models,
inference code, and an illustrative example of SUV image, tumor
mask, and N-T distance map are publicly available through the
DeepPET-OPSCC GitHub repository (https://github.com/deep-
med/DeepPET-OPSCC-Example). All of the data in the TCIA test
cohort can be accessed at TCIA (http://www.cancerimagingarchive.
net/).

Statistical analysis
This study conforms to the REMARK guidelines (34) and the

acceptance criteria set forth by the AJCC for the inclusion of risk
models (Supplementary Tables S1 and S2; ref. 35). The performance of
the automated segmentation model was assessed as described in the
Supplementary Protocol Section 2.6.

The c-index was used to investigate the predictive ability of the
prognosticmodel.We carried out a time-dependent receiver operating
characteristic (ROC) curve analysis and calculated the AUCs for OS at
2 and 5 years. The overall c-index and AUC in the discovery cohort
were calculated by concatenating all normalized scores from the five
test sets. To assess the improvements in the c-indexes between the
compared models, the Student t test for dependent samples was
used (36). A similar approach has been implemented in previous
studies (37, 38). The 95% confidence intervals (CI) for AUC were
constructed from 1,000 bootstrap replicates of the test sets of discovery
cohort and external test cohorts. In addition, the z test was used to
compare the differences in bootstrapped AUCs from different
models (39).

Univariable and multivariable Cox proportional hazards regression
survival analyses were also conducted. The Wald x2 test was used to
calculate P values in multivariable models. Because of missing HPV
information (56%) in the TCIA test cohort, the HPV status was not
entered into the multivariable model. Because only 26 patients who
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died had a known HPV status in the TCIA test cohort, cases in the
discovery and TCIA test cohorts with existing HPV data were grouped
in a unique cohort (i.e., the entire cohort) for multivariable analyses.
Due to the limited number of patients (n ¼ 31), events (n ¼ 15), and
HPV information (n ¼ 1) in the clinical deployment test cohort,
multivariable and subgroup analyses were not performed for this
cohort. In addition, smoking information was missing in seven of
the eight external centers; therefore, this variable was investigated only
in the discovery cohort. Kaplan–Meier estimate curves were generated
for OS, and survival differences were compared with the log-rank test.
Further, Spearman correlation coefficients were calculated to inves-
tigate the associations between the DeepPET-OPSCC risk category
and clinical variables. Following established criteria for developing
nomograms in the field of oncology (40), we devised integrated
nomograms from Cox regression coefficients using inputs from the

DeepPET-OPSCC score and clinical risk factors. All calculations were
performed in R, version 3.6.1. Statistical significance was determined
by P value <0.05.

Results
Patient characteristics

Table 1presents the general characteristics of the study participants.
Patients in the external test cohorts (n¼ 384) underwent PET imaging
with nine unseen scanners from three vendors (Supplementary
Protocol Table 1). The HPV status was available for 424 (65%) cases
(165 HPVþ and 259 HPV–). Among patients for whom the HPV
status was known, there were 211 (79%) and 47 (30%) HPV– cases in
the discovery and TCIA test cohorts, respectively. Primary radiother-
apy, either with or without chemotherapy, was given to 258 (96%)

Table 1. Clinical characteristics in the discovery, TCIA test, and clinical deployment test cohorts.

Characteristic
Discovery cohort
(n ¼ 268)

TCIA test cohort
(n ¼ 353)

TCIA test cohort with known
HPV status (n ¼ 155)

Clinical deployment
test cohort (n ¼ 31)

Age, years 53 (47–60) 61 (54–67) 61 (55–65) 59 (55–65)
Age, years

<55 154 (58%) 99 (28%) 39 (25%) 8 (26%)
≥55 114 (43%) 254 (72%) 116 (75%) 23 (74%)

Sex
Female 22 (8%) 75 (21%) 30 (19%) 8 (26%)
Male 246 (92%) 278 (79%) 125 (81%) 23 (74%)

HPV status
þ 57 (21%) 108 (31%) 108 (70%) 0
� 211 (79%) 47 (13%) 47 (30%) 1 (3%)
Missing 0 198 (56%) 0 30 (97%)

cT stage (AJCC seventh edition)
cT1 14 (5%) 54 (15%) 26 (17%) 5 (16%)
cT2 85 (32%) 149 (42%) 63 (41%) 9 (29%)
cT3 55 (21%) 87 (25%) 38 (25%) 1 (3%)
cT4a 79 (30%) 51 (14%) 21 (14%) 12 (39%)
cT4b 35 (13%) 7 (2%) 3 (2%) 2 (6%)
cT4 (substage missing) 0 5 (1%) 4 (3%) 2 (6%)

cN stage (AJCC seventh edition)
cN0 57 (21%) 50 (14%) 23 (15%) 10 (32%)
cN1 25 (9%) 35 (10%) 17 (11%) 6 (19%)
cN2 168 (63%) 247 (70%) 108 (70%) 12 (39%)
cN3 18 (7%) 21 (6%) 7 (5%) 3 (10%)

cTNM stage (AJCC seventh edition)
I 4 (2%) 6 (2%) 5 (3%) 3 (10%)
II 23 (9%) 23 (7%) 10 (7%) 2 (6%)
III 32 (12%) 48 (14%) 20 (13%) 3 (10%)
IVA 163 (61%) 244 (69%) 108 (70%) 19 (61%)
IVB 46 (17%) 28 (8%) 9 (6%) 4 (13%)
IV (missing substage) 0 4 (1%) 3 (2%) 0

Primary treatment
Surgery 10 (4%) 14 (3%) 5 (3%) 24 (77%)
Radiotherapy 258 (96%) 339 (97%) 150 (97%) 7 (23%)

Chemotherapy
Yes 252 (94%) 255 (72%) 104 (67%) 25 (81%)
No 16 (6%) 98 (28%) 51 (33%) 6 (19%)

Follow-up time, years 2.8 (1.5–5.6) 4.3 (2.9–6.6) 3.9 (2.8–5.5) 2.3 (1.3–2.8)
Event

Death 127 (53%) 70 (20%) 27 (17%) 15 (48%)
OS rate (95% CI)

2 years 67.4% (62.0–73.3) 91.4% (88.6–94.4) 91.6% (87.3–96.1) 63.6% (48.5–83.4)
5 years 50.0% (44.0–56.8) 79.9% (75.2–84.9) 79.0% (71.1–87.7) 44.8% (28.2–71.2)

Note: Data are expressed as medians (IQR ranges) or counts (percentages) unless otherwise specified.

Automated Prediction of Survival in Oropharyngeal Cancer

AACRJournals.org Clin Cancer Res; 2021 OF5

Research. 
on June 3, 2021. © 2021 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 4, 2021; DOI: 10.1158/1078-0432.CCR-20-4935 

http://clincancerres.aacrjournals.org/


patients in the discovery cohort as well as to 339 (97%) and 7 (23%)
patients in the two external test cohorts, respectively. The remaining
patients were treated with primary surgery, either with or without
postoperative treatments. Chemotherapy was used for 252 (94%), 255
(72%), and 25 (81%) patients in the discovery and two external test
cohorts, respectively. The clinical characteristics of the entire cohort
with known information of HPV status and cT, cN, and cTNM stages
are summarized in Supplementary Table S3.

DeepPET-OPSCC
Univariable and multivariable analyses

The distribution of theDeepPET-OPSCC score in the discovery and
TCIA test cohorts is depicted in Supplementary Fig. S1. The median
DeepPET-OPSCC score (–0.12) in the test sets of the discovery cohort
was used as the cutoff to obtain the DeepPET-OPSCC risk category
(dichotomized into high risk vs. low risk), whichwas a strong predictor
of OS in all three study cohorts (Figs. 2A and 2B; Supplementary
Table S4). After adjustment for age, sex, HPV status, cT stage, cN stage,
maximum SUV (SUVmax), metabolic tumor volume (MTV), and use
of chemotherapy in multivariable analysis, the DeepPET-OPSCC risk
category was retained as an independent predictor of OS (discovery
cohort: HR ¼ 2.07; 95% CI, 1.31–3.28; TCIA test cohort: HR ¼ 2.39;
95% CI, 1.38–4.16; P¼ 0.002; Table 2; Supplementary Table S5). The
use of chemotherapy was associated with a reduced mortality in
patients from the TCIA test cohort. However, after adjusting for the
HPV status, this significance was no longer evident (Table 2).

On multivariable analysis, the components of DeepPET-OPSCC
(i.e., -T and -TN models) were independent predictors of OS in the
discovery and TCIA test cohorts (Supplementary Tables S6 and S7).
The continuous DeepPET-OPSCC score was also retained as a
strong predictor in the multivariable model (Supplementary
Table S8). Validation with additional clinical variables (e.g., smoking)
as well as pathologic (e.g., tumor grade) and IHC-based (e.g., Cyclin
D1) markers in the discovery cohort is provided in Supplementary
Tables S9–S11.

Prediction accuracy
The c-indices of theDeepPET-OPSCC score forOSwere 0.707 (95%

CI, 0.658–0.757) and 0.689 (95%CI, 0.621–0.757) in the discovery and
TCIA test cohorts, respectively. The constituents of DeepPET-OPSCC
(i.e., -T and -TN models) were also strongly associated with OS
(Table 3). Nonetheless, ensemble models provided more robust and
reliable performance (especially with respect of unseen data) than a
single model both in terms of OS prediction and in univariable and
multivariable analyses (Table 3, Supplementary Tables S4–S7, S12–
S13). For example, DeepPET-OPSCC yielded a significantly higher
(P¼ 0.012) c-index than the -TNmodel in the discovery cohort, with a
borderline significantly higher (P¼ 0.10) c-index than the -Tmodel in
the TCIA test cohort (Supplementary Table S13). In addition, prog-
nostic markers generated by three other computational approaches of
3D ResNet-OPSCC, 2D DeepPET-OPSCC, and conventional radio-
mics all underperformed (P < 0.01) the DeepPET-OPSCC score in
both the discovery and TCIA test cohorts, with the exception of 3D
ResNet-OPSCC in the TCIA test cohort (P ¼ 0.21; Supplementary
Table S13; Supplementary Protocol, Section 3.5).

Subgroup analyses
The DeepPET-OPSCC risk category retained its ability to predict

OS when patients in the entire cohort with a known HPV status
were stratified into different subgroups according to HPV status and

cT, cN, and cTNM stages, or the use of chemotherapy (Supplementary
Figs. S2–S9). The majority of the study patients were staged as cTNM
IVA [113 (70%) of the 161 HPVþ patients and 158 (61%) of the 258
HPV– patients], and the DeepPET-OPSCC risk category was capable
of predictingOS in the two subgroups (for high vs. low risk, HR¼ 4.20;
95%CI, 1.18–14.92; P¼ 0.016; Fig. 2C; HR¼ 2.64; 95%CI, 1.65–4.21;
P < 0.001; Fig. 2D). We also investigated the relationship between
the DeepPET-OPSCC risk category and the usage of induction
chemotherapy before CCRT. For patients with HPV– and TNM
stage IVB cancer, induction chemotherapy was associated with an
inferior OS thanCCRT alone in theDeepPET-OPSCChigh-risk group
(HR ¼ 2.44; 95% CI, 1.03–5.79; P ¼ 0.037; Supplementary Table S14;
Supplementary Fig. S13).

Correlations between DeepPET-OPSCC and clinical parameters
The DeepPET-OPSCC risk category was significantly correlated

with a number of clinical parameters, including sex, HPV status, cT
stage, cN stage, cTNM stage, SUVmax, and MTV, both in the entire
cohort (Supplementary Table S15) and TCIA test cohorts (Supple-
mentary Table S16). The DeepPET-OPSCC score also showed signif-
icant correlations with SUVmax (R ¼ 0.31) and MTV (R ¼ 0.65;
Supplementary Fig. S14). A large proportion of HPVþ (e.g., among
104HPVþ cases, DeepPET-OPSCC identified 82 patients being at low
risk and 22 as being at high risk), cT1-cT3, cN0-cN2, and cTNM stage
I-IVAdiseases were classified as being at low risk byDeepPET-OPSCC
in the test cohort, thereby supporting the clinical utility of DeepPET-
OPSCC in Western populations.

Nomograms
Finally, we devised integrated nomograms by combiningDeepPET-

OPSCC score and the clinical risk factors (i.e., age, sex,HPV status, and
cT, cN, and cTNM stages). In the subgroup of patients with known
HPV status, the 5-year AUCs for the integrated nomogramwere 0.793
(95% CI, 0.749–0.834) and 0.801 (95% CI, 0.727–0.874) in the dis-
covery and TCIA test cohorts, respectively, thereby outperforming
clinical models and each individual risk factor [e.g., clinical model:
0.749 (95% CI, 0.649–0.842), clinical model plus MTV: 0.754 (95% CI,
0.659–0.843), HPV: 0.624 (95% CI, 0.530–0.729), and AJCC cTNM
stages: 0.517 (95% CI, 0.423–0.614) in the TCIA test cohort with
knownHPV status; P < 0.05; Fig. 2E; Supplementary Table S17]. A full
description—including c-indices and 2-year AUCs—is provided in
Tables S18 and S19 and Fig. S15 and S16 as well as in Supplementary
Protocol Section 5. On analyzing all of these results, the single
DeepPET-OPSCC score was never found to underperform (P >
0.05) the clinical model when the HPV status was missing in both
the discovery and TCIA test cohorts.

Clinical deployment: fully-automated prediction
Different procedures—including SUV conversion, segmentation,

and prognostic prediction—were assembled into a unique fully auto-
mated processing pipeline, whose performance was analyzed in the
clinical deployment test cohort. The mean processing time for the
complete automated processwas 2minutes 6 seconds per PET examon
an NVIDIA Titan RTX-6000 GPU. The fully-automated tool signif-
icantly predicted OS (P ¼ 0.002; Supplementary Fig. S17) with a c-
index of 0.787 (95% CI, 0.675–0.899), thereby indicating a robust
performance across different geographic regions, PET scanners, and
treatment protocols. In this cohort, the DeepPET-OPSCC outper-
formed the clinical model and each individual risk factor when the
HPV was missing (Supplementary Fig. S18).
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Figure 2.

Kaplan–Meier plots and time-dependent ROC curves for the DeepPET-OPSCC biomarker. Patients in the discovery cohort (A) and TCIA test cohort (B) stratified
according to DeepPET-OPSCC risk category. HPVþ patients and cTNM stage IVA disease (C) stratified according to DeepPET-OPSCC risk category. HPV– patients
and cTNM stage IVA disease (D) stratified according to DeepPET-OPSCC risk category. Figures S10-S12 depict Kaplan–Meier plots using DeepPET-OPSCC risk
categories (with three, four, or five groups defined by tertiles, quartiles, and quintiles, respectively, of the risk scores in the discovery cohort) similar asA toD.E,AUCs
atfive yearswere used to assess theprognostic accuracyof the integrated nomogram (combining theDeepPET-OPSCCscorewith clinical risk factors), clinicalmodel,
DeepPET-OPSCC score, and individual clinical risk factors (full description provided in Supplementary Protocol Section 5).
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Visualization
Our tool allowed obtaining a renormalized heatmap that can depict

risk at both voxel and patient levels through a hot-cold color code
(Fig. 3; Supplementary Figs. S19A–S19D). We found that the Deep-
PET-OPSCC-Tmodel focusedmostly on the tumor’s interior, whereas
the DeepPET-OPSCC-TN model tended to fixate on the interface
between the tumor and lymph nodes. This illustrative example also
shows that the -T and -TN models can complement each other.

Discussion
Using data from FDG-PET imaging, we devised a deep learning–

based fully-automated tool—based on deep segmentation and prog-
nostication models—for predicting OS in patients with OPSCC. The
system, which captured PET information from both the primary
tumor and lymphnodes, offered a rapid (calculation time:�2minutes)
prediction of OS and performed satisfactorily in an international
multicenter study. Notably, the DeepPET-OPSCC risk category was
retained in the multivariable analysis as an independent predictor of
OS in all cohorts, with an approximately two-fold increased risk for
mortality in the high-risk versus low-risk group. Further, the nomo-
gram combining the DeepPET-OPSCC score, age, sex, HPV status,
and cT, cN, and cTNM stage significantly improved the prediction
accuracy of OS.

Our work is currently the largest computational imaging–based
prognostic study conducted in patients with OPSCC (18–21). The
DeepPET-OPSCC score had c-indices of 0.689–0.787 for the pre-
diction of OS from baseline imaging, these values being substan-
tially higher than those previously reported (0.59–0.63) for radio-
mics markers (19, 20). In addition, our tool showed a robust
performance on PET data from different geographic regions, scan-
ners, and treatment protocols. Although the discovery cohort
consisted of patients treated primarily with combined radiotherapy
and chemotherapy, the DeepPET-OPSCC biomarker is applicable
to patients primarily treated with surgery or who did not receive
chemotherapy. Given that the AJCC principle requires a staging
system that must be applicable to any treatment approach that
meets accepted guidelines (2), the DeepPET-OPSCC score—which
remained an independent predictor after adjustment for different
treatments—might have the potential to complement the future
staging system. In addition, our automated tool is highly objective
and reproducible.

Recent years have witnessed a growing interest in the development
of deep learning–based prognostic systems based on imaging findings
for patients with malignancies (25–28). However, published
approaches have inherent limitations, which include the need for
manual segmentation and the inability to extract the 3D tumor
characteristics from 2D slices. Moreover, fully automated prediction

Table 2. Multivariable Cox regression analysis of OS in the discovery, TCIA test, and entire (with known HPV status) cohorts.

Variable
Discovery cohort

(n ¼ 268, events ¼ 127)
TCIA test cohort

(n ¼ 348, events ¼ 70)
Entire cohort with known

HPV status (n ¼ 419, events ¼ 153)

HR (95% CI) P HR (95% CI) P HR (95% CI) P
DeepPET-OPSCC risk category

Low risk Reference — Reference — Reference —

High risk 2.07 (1.31–3.28) 0.002 2.39 (1.38–4.16) 0.002 2.24 (1.50–3.39) <0.001
Age, years

<55 Reference — Reference — Reference —

≥55 0.95 (0.65–1.40) 0.804 2.21 (1.18–4.11) 0.013 0.86 (0.61–1.21) 0.388
Sex

Female Reference — Reference — Reference —

Male 1.38 (0.54–3.52) 0.506 1.96 (0.91–4.19) 0.084 1.37 (0.65–2.89) 0.408
HPV

� Reference — — — Reference —

þ 0.19 (0.09–0.41) <0.001 — — 0.24 (0.14–0.41) <0.001
cT stage — 0.012 — 0.019 — 0.003

cT1 0.88 (0.24–3.15) 0.839 0.54 (0.21–1.35) 0.185 1.18 (0.48–2.96) 0.714
cT2 Reference — Reference — Reference —

cT3 1.75 (0.91–3.52) 0.093 1.61 (0.81–3.18) 0.171 2.05 (1.17–3.60) 0.012
cT4a 2.96 (1.53–5.73) 0.001 3.43 (1.42–8.29) 0.006 3.27 (1.82–5.88) <0.001
cT4b 2.09 (0.96–4.53) 0.064 3.54 (0.98–12.76) 0.054 2.70 (1.34–5.44) 0.005

cN stage — <0.001 — 0.006 — 0.004
cN0 Reference — Reference — Reference —

cN1 2.41 (1.12–5.22) 0.025 1.60 (0.61–4.20) 0.341 2.18 (1.10–4.33) 0.026
cN2 2.41 (1.38–4.20) 0.002 1.08 (0.50–2.31) 0.851 2.29 (1.37–3.82) 0.002
cN3 4.96 (2.28–10.80) <0.001 4.27 (1.51–12.08) 0.006 3.36 (1.63–6.90) 0.001

SUVmax
a

<14.65 Reference — Reference — Reference —

≥14.65 0.60 (0.40–0.88) 0.010 1.50 (0.85–2.65) 0.163 0.75 (0.53–1.07) 0.113
MTVa

<22.66 cm3 Reference — Reference — Reference —

≥22.66 cm3 1.18 (0.72–1.95) 0.509 0.40 (0.19–0.83) 0.014 0.88 (0.56–1.37) 0.571
Chemotherapy

No Reference Reference
Yes 0.50 (0.23–1.09) 0.080 0.45 (0.26–0.80) 0.006 0.76 (0.48–1.21) 0.245

aCutoff threshold was the median value in the discovery cohort.
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systems may improve the objectiveness and are currently gaining
traction (41).

Our prognostic tool was implemented on FDG-PET images,
which exhibit high image contrast and small variation among
various acquisitions and reconstructions (42), thereby making
fully-automated image analysis a more promising task. Although
the segmentation model (nnUNet) is clinically applicable for dis-
tinct segmentation tasks (23, 29), extensive data augmentation
enabled the generalization of this model to unseen domains (30).
The ConvCox prognostic model developed in our study is a
regression network that has the capacity to learn time-dependent
events directly from all the available data. This is a highly desirable
feature for prognostic applications, where the number of patients
with complete baseline imaging data tends to be limited. Moreover,
the ConvCox network is designed with consideration of several
architectural modifications, optimized training and inference con-
figurations, incorporation of domain knowledge (e.g., N-T distance
map), and the model ensemble of -T and -TN constituents (focusing
on the tumor itself and its relationship with lymph nodes, respec-
tively), thereby improving its robustness and generalization. In deep
learning practice, assembling models trained from several training-
validation data splits (e.g., five models trained from nested five-fold
cross-validation in the current study) is a commonly utilized
solution that is efficient and effective in improving model robust-
ness on unseen data (23, 29, 41).

The DeepPET-OPSCC outperformed all other clinical variables for
OS prediction at 2 and 5 years. In addition, it was found to correlate
with known clinical and PET-derived prognostic parameters. Taken
together, these observations indicate an association between the

prognostic features captured by deep learning and established prog-
nostic markers in OPSCC, including the HPV and AJCC stages. These
interrelationships may also explain why DeepPET-OPSCC performed
similarly well in Asian and Western populations, despite different
disease characteristics (e.g., different proportions of HPVþ cases and
5-year OS). Moreover, DeepPET-OPSCC followed the path of the
eighth AJCC staging system, which downstaged stage IV to stages I to
III for HPVþ OPSCC. Accordingly, 182 (67%) of the 271 cases with
stage IV disease in the TCIA test cohort (70%HPVþ) were classified as
being at low risk by the DeepPET-OPSCC.

WhenDeepPET-OPSCCwas included inmultivariable analyses, we
unexpectedly found that high SUVmax (HR ¼ 0.60; P ¼ 0.010) in the
discovery cohort and high MTV (HR ¼ 0.40; P ¼ 0.014) in the TCIA
test cohort had protective effects. A potential explanation may be
related to the presence of necrosis or abscess tumors, whichwas known
to portend poor outcomes in head and neck malignancies while being
associated with low SUVmax and MTV values (43). Alternatively, this
result may stem from the presence of collinearity in multivariable
analysis. In this regard, DeepPET-OPSCC was significantly correlated
(P < 0.001) with both SUVmax and MTV. Nevertheless, this effect was
not observed in the entire cohort with known HPV status. Similar
counterintuitive results can be found in multivariable analyses of
published clinical studies (38, 41), in which, for example, cT3 or cT4
versus cT1 yielded an HR of 0.4 (38).

Our tool enabled us to obtain a renormalized heatmap that can
depict risk at both patient and voxel levels through a hot-cold color
encoding. Although we hypothesize that personalized radiation plans
with higher tumoricidal doses could potentially target the identified
high-risk regions (12, 44), this requires further investigation.

Table 3. c-index, HR, and AUC at 5 years, all with 95% CIs, of different deep learning and radiomics approaches evaluated on the
discovery and TCIA test cohorts.

Discovery cohort (n ¼ 268)
Methods c-index HR P 5 years AUC

DeepPET-OPSCC 0.707 (0.658–0.757) 3.17 (2.18–4.63) <0.001 0.728 (0.677–0.777)
DeepPET-OPSCC-T 0.702 (0.652–0.752) 3.07 (2.11–4.46) <0.001 0.723 (0.670–0.774)
DeepPET-OPSCC-TN 0.682 (0.632–0.733) 2.82 (1.95–4.09) <0.001 0.705 (0.663–0.754)
3D ResNet-OPSCC 0.646 (0.595–0.697) 1.95 (1.36–2.79) <0.001 0.638 (0.584–0.699)
3D ResNet-OPSCC-T 0.633 (0.583–0.683) 1.87 (1.31–2.68) <0.001 0.612 (0.547–0.674)
3D ResNet-OPSCC-TN 0.627 (0.575–0.678) 1.88 (1.32–2.69) <0.001 0.623 (0.566–0.677)
2D DeepPET-OPSCC 0.605 (0.552–0.658) 1.92 (1.35–2.73) <0.001 0.600 (0.542–0.657)
2D DeepPET-OPSCC-T 0.616 (0.564–0.668) 2.01 (1.41–2.88) <0.001 0.621 (0.566–0.678)
2D DeepPET-OPSCC-TN 0.586 (0.533–0.638) 1.49 (1.05–2.12) 0.026 0.575 (0.520–0.631)
Radiomics signature 0.621 (0.570–0.672) 1.85 (1.30–2.65) <0.001 0.619 (0.560–0.676)

TCIA test cohort (n ¼ 353)
Methods c-index HR P 5 years AUC

DeepPET-OPSCC 0.689 (0.621–0.757) 3.15 (1.97–5.05) <0.001 0.669 (0.600–0.743)
DeepPET-OPSCC-T 0.672 (0.604–0.739) 2.89 (1.81–4.63) <0.001 0.682 (0.623–0.743)
DeepPET-OPSCC-TN 0.692 (0.625–0.760) 2.71 (1.68–4.35) <0.001 0.664 (0.595–0.738)
3D ResNet-OPSCC 0.665 (0.599–0.731) 1.68 (1.05–2.69) 0.031 0.662 (0.604–0.719)
3D ResNet-OPSCC-T 0.676 (0.616–0.736) 1.98 (1.24–3.17) 0.005 0.656 (0.598–0.715)
3D ResNet-OPSCC-TN 0.657 (0.591–0.724) 2.10 (1.30–3.38) 0.002 0.661 (0.602–0.719)
2D DeepPET-OPSCC 0.591 (0.519–0.663) 1.61 (1.00–2.60) 0.051 0.550 (0.478–0.621)
2D DeepPET-OPSCC-T 0.572 (0.498–0.647) 1.37 (0.84–2.22) 0.21 0.541 (0.469–0.615)
2D DeepPET-OPSCC-TN 0.596 (0.526–0.667) 1.77 (1.08–2.89) 0.024 0.563 (0.501–0.629)
Radiomics signature 0.608 (0.538–0.677) 1.81 (1.13–2.90) 0.014 0.564 (0.488–0.642)

-T, prognosis model uses SUV map/image and tumor mask as input; -TN, prognosis model uses SUV map/image, tumor mask, and nodes-to-tumor (N-T) distance
map as input.
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Figure 3.

Examples of 3D PET images (consecutive image slices), corresponding activation maps (heatmaps), and two enlarged images with heatmaps for better visual
observation. In this illustrative example, auto-segmented tumors and lymph nodeboundaries are indicated by red andgreen curves, respectively. ThePET images are
anonymized by blocking the eye region with black boxes.
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The application of DeepPET-OPSCC enabled the identification
of different prognostic subgroups even when current classification
approaches (i.e., HPV and AJCC stages) were applied. For exam-
ple, we were able to show that certain subgroups of HPVþ patients
with AJCC stage IVA or N2 disease (Fig. 2C; Supplementary
Figs. S4 and S10–S12) have favorable outcomes and may benefit
from less intensive treatment protocols [e.g., de-intensified
radiotherapy or chemoradiotherapy, which have been shown to
achieve clinically favorable results for HPVþ patients with respect
to induction chemotherapy response (7, 8), without evidence of
hypoxia on baseline or inter-treatment PET imaging (9), or T0-T2,
N0-N2c OPSCC (AJCC seventh edition; ref. 45)]. Conversely,
certain subgroups of HPV– patients with cT1–3, T4a, N1, N2,
AJCC III, or IVA stages (Fig. 2D; Supplementary Figs. S6–S8 and
S10–S12) had a dismal prognosis and, thus, may be candidates
for more aggressive treatment strategies [e.g., the combination of
an antagonist of the multiple inhibitor-of-apoptosis protein
(Debio 1143) with chemoradiotherapy outperformed high-dose
chemoradiotherapy in patients with stages III, IVA, and IVB
(AJCC seventh edition) head and neck cancer (58% are HPV–
OPSCC; ref. 10)]. Interestingly, CCRT was associated with a better
OS compared with induction chemotherapy and CCRT in patients
with the most advanced disease stage (HPV– and stage IVB) and a
high-risk DeepPET-OPSCC category. This can be explained by the
observation that higher toxicity delays or even prevents patients
from completing subsequent CCRT, which is critical for maxi-
mizing OS (3).

Several caveats of our study must be considered. First, the perfor-
mance of the DeepPET-OPSCC prognostic biomarker needs to be
tested in larger longitudinal investigations. Second, unavailable data on
HPV status for several patients in the TCIA and clinical deployment
test cohorts pose a limitation regarding the ability to generalize our
conclusions with regard to the presence or absence of HPV infections.
Third, the retrospective nature of the study did not permit the
application of the more recent (eight edition) AJCC staging system,
although this is likely non-influential on ourmain conclusions. Fourth,
the automated tool may be unsuitable to segment a minor percentage
(1–3%) of early-stage tumors, which will ultimately require manual
segmentation. Finally, we selected cut-off values for risk categorization
based on the Asian population, with most patients being HPV–. In
future prospectively designed studies with larger sample sizes, it might

be reasonable to select more suitable cut-off values separately for
HPVþ and HPV– patients.

In summary, the primary novelty of this large international study
lies in the possibility of obtaining an accurate prediction of OS in
patients with OPSCC through a fully-automated deep learning–based
tool. On the one hand, such an approach enables an objective,
unbiased, and rapid assessment that is suitable for clinical prognos-
tication. On the other hand, the use of our biomarker has the potential
to tailor treatment at the individual level.
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