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ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis
of ~10% in five year survival rate. Surgery remains the best option of a potential cure for patients who are
evaluated to be eligible for initial resection of PDAC. However, outcomes vary significantly even among
the resected patients who were the same cancer stage and received similar treatments. Accurate quantita-
tive preoperative prediction of primary resectable PDACs for personalized cancer treatment is thus highly
desired. Nevertheless, there are a very few automated methods yet to fully exploit the contrast-enhanced
computed tomography (CE-CT) imaging for PDAC prognosis assessment. CE-CT plays a critical role in PDAC
staging and resectability evaluation. In this work, we propose a novel deep neural network model for the
survival prediction of primary resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional
Long Short-Term Memory network (CE-ConvLSTM), which can derive the tumor attenuation signatures
or patterns from patient CE-CT imaging studies. Tumor-vascular relationships, which might indicate the
resection margin status, have also been proven to hold strong relationships with the overall survival of
PDAC patients. To capture such relationships, we propose a self-learning approach for automated pan-
creas and peripancreatic anatomy segmentation without requiring any annotations on our PDAC datasets.
We then employ a multi-task convolutional neural network (CNN) to accomplish both tasks of survival
outcome and margin prediction where the network benefits from learning the resection margin related
image features to improve the survival prediction. Our presented framework can improve overall sur-
vival prediction performances compared with existing state-of-the-art survival analysis approaches. The
new staging biomarker integrating both the proposed risk signature and margin prediction has evidently
added values to be combined with the current clinical staging system.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

section margin may be a potentially curative treatment option for
patients with PDAC (Joo et al., 2019). Offering surgery to those who

Pancreatic cancer is the third most common cause of cancer
deaths in the United States (Siegel et al., 2019). Pancreatic duc-
tal adenocarcinoma (PDAC) is the most common (approximately
95%) pancreatic cancer and has the poorest prognosis among all
solid malignancies with a 5-year overall survival (OS) rate of
10% (Grossberg et al., 2020). Surgical resection with a negative re-
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would most likely benefit (e.g., cured with a high chance of long-
term survival) is thus very important for improving patients’ life
expectancy.

Recently, many machine learning and deep learning methods
have been proposed for the preoperative prognosis of various hu-
man cancers using computed tomography (CT) or MRI imaging. Ra-
diomics, an emerging technique that converts medical images into
hand-crafted radiomic features, has successfully demonstrated its
power in glioblastoma brain tumor (Bakas et al., 2017), lung can-
cer (Aerts et al., 2014) and Head & Neck cancer (Kwan et al., 2018),
etc. The handcrafted radiomics approach usually involves manual
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Fig. 1. Example of the multi-phase CE-CT images, anatomy segmentation and PDAC tumor enhancement patterns. The blue arrow depicts a hypo-attenuating tumor; white
arrow indicates an iso-attenuating mass. The proposed pancreas and peripancreatic anatomy segmentation has 10-class labels. PVSV is short for “Portal Vein and Splenic
Vein”, “SMV” for “Superior Mesenteric Vein”, “SMA” for “Superior Mesenteric Artery”, “TC” for “Truncus Coeliacus”, “IVC” for “Inferior Vena Cava”. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

segmentation of the region of interest (e.g., the tumor) on medical
imaging, and extraction of hundreds of quantitative features from
the ROI, which describe tumor geometry, intensity, and texture
characteristics. Machine learning methods are used in the final step
to identify or select the imaging features that are associated with
a given clinical task. Though hand-crafted radiomics feature-based
methods have shown promising results, there have been valid con-
cerns of reproducibility and/or human bias introduced due to the
reliance on human feature design, manual segmentation, and vari-
ations in imaging and pre-processing techniques for feature extrac-
tion (Traverso et al., 2018). Compared with conventional radiomics
feature learning, deep learning methods allow for automated learn-
ing of clinically relevant radiographic image and geometric features
and avoid the requirement on human interventions, thus attract-
ing more and more interest in recent years. 3D convolutional neu-
ral network (CNN)-based prognosis models have shown good per-
formances in outcome prediction of lung cancer (Lou et al., 2019;
Xu et al,, 2019) and gliomas (Nie et al., 2016; Liu et al, 2019).
The success of 3D CNNs contributes to capturing the deep fea-
tures in both the 3D gross tumor volume and peritumoral regions.
However, such models may not generalize well for PDAC prognosis
because important predictive information has not been effectively
exploited from Dynamic Contrast-enhanced computed tomography
(DCE-CT) imaging and pancreas and peripancreatic anatomies.
Dynamic Contrast-Enhanced Computed tomography (DCE-CT)
remains the primary initial imaging modality of choice for the pan-
creatic cancer diagnosis. It plays a major role in depicting, staging,
patient management (Zhao et al., 2021) and evaluating PDAC re-
sectability (Dickinson et al., 2020). The preoperative multi-phase
CE-CT pancreatic imaging used in this study have been scanned at
three time points. After the non-contrast phase, average imaging
time delays are 40-50 s for the pancreatic phase and 65-70 s for
the portal venous phase. Fig. 1 shows three examples to illustrate
different tumor attenuation patterns and resection margins of pa-
tients with PDAC. Tumor attenuation visual patterns in specific CT
phases are very important characteristics to identify and detect the
tumor. Each row in Fig. 1 represents one PDAC patient, and red
boundaries are the tumor annotations. The blue arrow indicates
a typical hypo-attenuating tumor, while the white arrow depicts

an iso-attenuating tumor. Besides the channel of tumor attenua-
tion, another very critical factor is the resection margin indicating
the margin of apparently non-tumorous tissue around a tumor that
has been surgically removed. More specifically, the resection mar-
gin is characterized as RO (microscopically margin-negative) when
no evidence of malignant glands was identified microscopically at
the primary tumour site. R1 (margin-positive) resections have ma-
lignant glands infiltrating at least one of the resection margins on
the permanent section (Konstantinidis et al., 2013). Although the
margin status is only available via microscopic pathology after the
surgery is conducted, there still have cues appearing in CT images
to facilitate potential preoperative predictions of margin status. For
example, when looking at the PDAC and surrounding vessels of the
middle patient in Fig. 1, we can observe that the tumor has the
contact with the portal vein and splenic vein (PVSV) and the final
resection margin is positive (R1) for this patient. Nevertheless no
obvious tumor-vascular contacts can be depicted in the first and
the third patients that have RO status. Examples of these patients
show that it is possible or feasible to predict the post-operative
resection margin from preoperative CT imaging.

Both tumor attenuation and resection margin are associated
with patients’ clinical outcomes. In previous studies, Kim et al.
reported that visually isoattenuating PDACs are associated with
better survival rates after surgery, as opposed to typical hypo-
attenuating PDACs (Kim et al, 2010). Surgeries resulting in an
RO resection usually associate with relatively long-term survival.
In contrast, an R1 resection may have a high cancer recurrence
chance, and thus patients suffer worse clinical outcomes. Specif-
ically, according to one recent study, RO has a median OS of 22
months versus R1 of 15 months (Tummers et al., 2019). Hypo-
attenuating mass can be clearly observed in both pancreatic and
venous phases of the second and third patients, indicating low
stromal fractions (worse clinical outcomes). The first patient in
Fig. 1 reflects both isoattenuating in the pancreatic and venous
phase compared with its adjacent pancreas regions, indicating high
stromal fractions (better survival). Between the second and third
patients (Fig. 1), though hypo-attenuating could be seen in both
patients, the second patient undergoes a R1 resection, and we
could also see the higher degree of tumor-vascular contact by ob-
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serving the PDAC and surrounding anatomies (four vessels and
pancreas). Survival information shows that this patient died at 12
months, which has a worse outcome than 25 months of the third
patient. Fig. 1 illustrates that both tumor enhancement patterns
across phases and tumor-vascular contact are very useful imaging
features to reflect tumor’s pathological heterogeneity, location, and
vascular contact for building a more accurate prognosis model.

1.1. Main contributions

Though several studies can be found on survival prediction us-
ing deep learning, to the best of our knowledge, this is the first
deep learning-based prognosis approach for directly and efficiently
using dynamic multi-phase CT imaging for predicting OS and re-
section margin of patients with PDAC. Clinically, the deep learning
output is analyzed in conjunction with established clinical prog-
nostic factors (e.g., pTNM staging, pathological tumor size, CA19-9,
and stromal fraction etc.) to confirm that it is an independent risk
factor. The major contributions of our work can be summarized as
follows.

o PDAC tumor attenuation across phases is associated with OS.
To capture this cue, we propose a novel 3D Contrast-Enhanced
Convolutional Long Short-Term Memory (CE-ConvLSTM) deep
network to learn the enhancement dynamics of tumor atten-
uation from multi-phase CE-CT images. This model can capture
the tumor’s temporal changes across several phases more effec-
tively than the early fusion of input images.

e Tumor-vascular invasion and tumor-pancreas image contrast
are associated with resection margin and OS. To depict these
channels, we exploit a self-learning approach for automated
segmentation of pancreas and peripancreatic anatomies (in-
cluding pancreas, pancreatic duct, PVSV, superior mesenteric
vein [SMV], superior mesenteric artery [SMA], and truncus
coeliacus [TC]), without requiring any manual annotations of
our PDAC dataset.
To make the prediction of OS and resection margin benefit from
each other, we present a multi-task learning framework to con-
duct a joint prediction. The jointly learning of cancer risk and
resectability in a multi-task setting can derive more effective
and comprehensive prognosis related deep image features and
subsequently improve the prediction accuracies for both tasks.
Extensive evaluation and statistical analysis verify the effective-
ness of our presented framework. The signature built from the
proposed model remains statistically strong in the multivari-
able analysis adjusting for established clinical predictors, and
has the potential be be combined with the established clinical
factors for risk stratification and treatment decisions of patients
with PDAC.

Our preliminary work that uses deep multi-task learning for
the same prediction tasks has been reported in MICCAI 2020
(Yao et al,, 2020a). The current study provides more sophisti-
cated/elaborated methodology development and significantly more
comprehensive evaluations. Specifically, we provide a new segmen-
tation method of the pancreas and peripancreatic anatomies using
a self-learning framework (Zhang et al., 2020). The full anatomy
structures, for the first time, are incorporated into a more complete
multi-task deep prognosis model, allowing a more comprehen-
sive understanding of PDAC prognosis problem. For instance, PDAC
tumor-vascular contact not only determines the resectability (Hong
et al., 2018; Grossberg et al., 2020; Mizrahi et al., 2020) but also
could be OS predictors (Dickinson et al., 2020). Image contrast be-
tween the tumor and surrounding pancreas parenchyma (exclud-
ing the pancreatic duct) reflects molecular and pathological hetero-
geneity of PDAC - it may be used to stratify patients into distinct
subtypes, including longer-shorter survival time (Koay et al., 2018;
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Cai et al, 2020). Notably better experimental results have been
achieved than the previous work (Yao et al., 2020a) and traditional
radiomics approaches, which do not incorporate the full anatomy
information. In addition, we provide a more thorough evaluation
and statistical analysis in a larger patient cohort (n=296) by en-
rolling 91 more patients than our preliminary work (Yao et al.,
2020a).

2. Related work

Computed tomography (CT) is the most commonly adopted
imaging modality to detect, stage, and evaluate human cancers,
including pancreatic cancers. During recent years, many methods
have been proposed for survival prediction using CT images, and
they can be categorized into two categories: traditional radiomics-
based models and deep learning-based methods.

2.1. Radiomics approaches

Radiomics features have demonstrated the potential to describe
underlying tumor biology and thus are used to associate with vari-
ous diagnosis and prognosis tasks across many cancer types (Aerts
et al, 2014; Gillies et al., 2016). Radiomics approaches convert
imaging data into high-dimensional measurable and predefined
features using texture analysis, which captures the spatial varia-
tions in pixel intensities within a tumor. Those features usually in-
clude signal intensity, shape, texture, and higher-order texture fea-
tures. Signal intensity features are calculated based on histograms
of individual voxel intensities. Shape features are designed from
the 2D/3D geometry of the target (e.g., tumor). Texture features
are computed in either 2D or 3D to consider the spatial relation-
ships of attenuation of neighboring pixels or voxels. Higher-order
texture features include statistics by adding a filtration process like
wavelet filter before feature extraction (Lubner et al., 2017). The ra-
diomics feature extraction process typically generates hundreds of
hand-crafted features, followed by dimension reduction and fea-
ture selection to be performed to identify the most relevant fea-
tures.

One of the most important clinical-relevant applications of ra-
diomics is the ability to help predict patient survival of can-
cer patients in a preoperative setting, especially for patients with
PDAC (Chu et al., 2020). Different from other solid tumor type can-
cers, surgical resection at present remains the only cure for pa-
tients with PDAC. However, pancreatic resection can cause major
morbidity and poses a risk of surgical mortality. Valid and effec-
tive preoperative risk models would be very useful for patients
who will benefit the most from pancreatic resection. In multi-
ple research work, radiomics features were used to predict overall
survival and disease-free survival of resectable PDACs (Cassinotto
et al., 2017; Yun et al., 2018; Eilaghi et al., 2017; Attiyeh et al.,
2018). Cassinotto et al. enrolled 99 PDAC patients with portal ve-
nous phase CT and extracted histogram features of the largest tu-
mor slice (Cassinotto et al., 2017). They found tumor hypoatten-
uation is associated with higher tumor grade, greater lymph node
invasion, and shorter disease-free survival. Another study extracted
radiomics features from all tumor slices from portal venous phase
CT and found heterogeneously hypo-attenuating tumors associated
with poor overall survival (Attiyeh et al., 2018). Though some re-
ports concluded that heterogeneous tumors are associated with
worse survivals (Cassinotto et al., 2017; Attiyeh et al., 2018); oth-
ers found that more homogeneous tumors are associated with poor
survival (Yun et al., 2018) which contradicts the previous findings.
The apparent difference may come from both the variability in pa-
tient selection and the human bias introduced into the radiomics
process by using 2D manual selected tumor slices and human
pre-defined features. Recently, traditional radiomics approaches are
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Fig. 2. The overall workflow of our DeepPrognosis system for PDAC patients prognosis.

criticized and challenged by their lack of reproducibility and inter-
pretability as well as over-fitting on small datasets (Traverso et al.,
2018).

2.2. Deep learning survival models

Recently, with the advance of deep neural networks, deep
learning-based approaches have shown good performances not
only in medical imaging diagnosis (Wang et al., 2017; 2019;
Zhang et al., 2017), but also in deep survival models for seeking
more powerful deep representations (Katzman et al., 2016) based
on various imaging modalities, including pathology (Yao et al.,
2017; 2019; Zhu et al., 2016; 2017; Wulczyn et al., 2021), radio-
graphic images (Jiang et al., 2020; Xu et al., 2019) and PET imag-
ing (Cheng et al., 2021). In computational digital pathology, many
deep learning survival models with pathological slides (Yao et al.,
2020b; Mobadersany et al., 2018; Skrede et al., 2020; Wulczyn
et al., 2020), have been proven successful in addressing both vari-
ous cancer types and the specific colorectal cancer from the real
large-scale clinical environments (Skrede et al., 2020). Different
from pathological slides that are only available through operative
biopsy procedures, dynamic contrast-enhanced CT serves as the
frontline imaging modality for staging and evaluating cancer. The
prediction model with CT images may be more important and con-
venient for patients with PDAC as most of their pathological results
can only be obtained after surgery.

Many studies have been proposed on various deep learning sur-
vival models in CT images for glioblastoma and lung cancer pa-
tients (Tang et al., 2020; Lou et al., 2019; Xu et al., 2019; Kim et al.,
2020). Glioblastoma (GBM) is the most common malignant brain
tumor, and many work designed models and reported their sur-
vival prediction of GBM patients. In (Jungo et al., 2017), radiomics
features extracted from brain tumors using multimodal MRI im-
ages are fed to train an artificial neural network for OS (Overall
Survival) prediction. To automatically learn OS-related deep MRI
features, several deep learning-based OS prediction methods (Nie
et al, 2016; 2019) are presented where a multi-channel CNN is
proposed. A multi-task model which conducts a joint prediction
of both tumor genotype and OS time is proposed for much im-
proved OS prediction accuracy (Tang et al., 2020). A similar multi-
task deep learning model can also be found for individualizing ra-
diotherapy dose for lung cancer patients (Lou et al., 2019).

Though deep learning models are successfully applied for au-
tomated learning of relevant radiographic information without the
need for manual definitions, recent models are still not suitable to
handle pancreatic cancer imaging protocol where multi-phase dy-
namic contrast-enhanced CT is utilized.

2.3. Self-learning for medical image segmentation

Image segmentation is a fundamental problem in medi-
cal image analysis. UNet-based approaches have shown ro-
bust image segmentation accuracy in many medical applications
(Isensee et al., 2021), when a training dataset with plenty quanti-
ties of pixel-level fully-annotated images is available. However, it
is usually infeasible and inconvenient to construct a large, well-
organized, and volumetric-annotated medical image dataset. Also,
recent PDAC (Zhu et al., 2018; 2019) and pancreatic duct segmenta-
tion (Wang et al., 2020) used a fully annotated dataset to train the
model. Self-learning assumes that a deep model (student) trained
from noisy annotations (teacher) has the potential to surpass the
teacher (Guan et al., 2018; Khoreva et al., 2017; Zhang et al., 2018).
Recent work find new effective strategies to improve the student
performance further, including adding regularization (Roth et al.,
2019) or noises (Xie et al., 2020) to perturb the noisy annota-
tions and generate noisy but informative annotations on a large
unannotated external dataset (Xie et al.,, 2020). Most recently, we
adapt the self-learning framework for improving tumor segmenta-
tion performance in the scenario of multi-institutional multi-phase
partially-annotated CT scans being available (Zhang et al., 2020). In
this paper, we adopt and extend a similar framework for the pan-
creas and peripancreatic anatomy segmentation.

A pre-trained segmentation model and deep learning survival
model could be integrated into an end-to-end framework. How-
ever, this might be challenging in a self-learning setting, in which
the lack of ground truth annotations cannot ensure reliable joint
learning. Moreover, the optimal image intensity normalization
methods might be different for the segmentation and prediction
tasks. In clinical studies, the manual segmentation is mostly per-
formed blind to the patient outcome information. Previous deep
learning-based prognosis studies (Tang et al., 2020; Lou et al.,
2019; Xu et al., 2019; Kim et al., 2020) are also conducted with
a manual mask available.

3. Methodology

The overall workflow of our DeepPrognosis is illustrated in
Fig. 2, which consists of (1) pancreas and peripancreatic anatomy
segmentation, (2) deep multi-task model with contrast-enhanced
(CE) ConvLSTM for OS and resection margin prediction, and (3)
building the final PDAC staging from risk scores and margin pre-
dictions.

3.1. Pancreas and peripancreatic anatomy segmentation

Fig. 3 depicts our proposed self-learning framework for the
pancreas and peripancreatic anatomy segmentation using multi-
institutional multi-phase partially annotated CT scans. Given the
self-collected PDAC multi-phase CT datasets from two (i.e., A and
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Fig. 3. The proposed self-learning framework for segmentation of pancreas and peripancreatic anatomies without requiring manual annotations of self-collected datasets.

B1) hospitals without any annotation of anatomies, our method
can effectively incorporate and utilize other datasets (i.e., hospital
B2, C, D) and annotations to segment pancreas and peripancreatic
anatomies, described as follows.

In details, firstly, we train a multi-phase Pancreas and Tumor
(denoted as Teacher P&T) segmentation model. Dataset A and B1
are two self-collected, large-scale (n =867), multi-phase CT PDAC
Datasets without annotations of pancreas anatomies. Dataset C
(Simpson et al., 2019) is a public venous phase CT dataset including
manual pixel-level annotations of pancreas and tumor. It is used to
train a (five-fold) ensemble segmentation model, which is used to
generate pseudo annotations of the pancreas and tumor in the ve-
nous phase CT images in Dataset A and B1. Then teacher P&T is
trained on the registered non-contrast, arterial and venous phases
CT scans in Dataset A and B1 with those generated pseudo anno-
tations.

Secondly, a single-phase Organ and Vessel (denoted as Teacher
0O&V) segmentation model is trained using the same process as
in Zhang et al. (2020). Briefly, Dataset D is a public dataset
(Gibson et al., 2018), including 90 patient abdominal CT volumes
with partially annotated organs and vessels up to 14 classes. We
complete annotations of 46 CTs for 17 classes, including three addi-
tional peripancreatic vessel classes (SMA, SMV, and TC) under the
supervision of a board-certified radiologist. Then the self-learning
method is used to train the Teacher O&V on all 90 CT scans with
17 classes of annotations.

Thirdly, we train a multi-phase pancreatic Duct (denoted as
Teacher D) segmentation model. Dataset B2 is a self-collected,
multi-phase CT, IPMN (intraductal papillary mucinous neoplasms)
datasets with radiologist-annotated IPMN. IPMNs are mucin-
producing cysts and may spatially involve the main duct, branch
duct, or a combination of both (Dalal et al., 2020). Teacher D is
trained on the registered multi-phase CT images with the pancreas
and IPMN/duct annotations. Note that the pancreas annotations

used in the model training are generated by Teacher P&T output
segmentation on this dataset (B2).

Fourthly, the above three Teachers are respectively applied on
multi-phase CT scans in Dataset A and B1 to infer corresponding
pseudo annotations. More specifically, the pancreas&tumor, pan-
creatic duct, and organ&vessels pseudo annotations are generated
by Teacher P&T, Teacher D, and Teacher O&V, respectively. Since
Teacher O&V is learned to segment single-phase (either arterial
or venous) CT, we first apply it to segment the arterial and ve-
nous phase CT images in Dataset A and B1. Then the two resulting
vessel masks are combined by trusting the artery masks (i.g., TC,
SMA, and aorta) in the arterial phase and vein masks (i.g., PVSV,
SMV, and inferior vena cava) in the venous phase. The duode-
num masks generated on the venous phase are used as the duo-
denum pseudo annotations, as the duodenum is better visible on
the venous phase. Note that all teachers can segment the pancreas.
We use the pancreas masks segmented by Teacher P&T since it is
self-learned on the multi-phase CT images with the largest data
size. In addition, vessel masks are used to overlay the pancreas
masks. Because the former segmentation task is easier than the
latter in general, Teacher P&T is not learned to distinguish the pan-
creas and vessels. As such, teachers with different specialties be-
have collaboratively like an ensemble when generating the pseudo
annotations on the large datasets (n=867) that demonstrate more
anatomy variations, allowing the student to take advantage of dif-
ferent teachers and learn beyond teachers effectively to be capable
of segmenting more challenging images desirably.

Last, we train a Student model on both Datasets A and B1 with
pseudo annotations (generated as above) of ten classes in total,
i.e., pancreas, tumor, duct, aorta, inferior vena cava, duodenum, TC,
SMA, PVS, and SMV. Learning multiple classes in a single model al-
lows the student to implicitly capture the spatial context informa-
tion, further improving segmentation accuracy for each class com-
pared to the teachers. Note that some organs and vessels are ex-
cluded (e.g., liver, spleen, and esophagus, etc.) from the student’s
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Fig. 4. An overview of the proposed multi-task model with CE-ConvLSTM.

learning process since they are not directly related to PDAC OS pre-
diction. Finally, the trained Student model is applied to Dataset A
to generate masks used in the prognosis model (Section 3.2). Our
overall self-learning training framework utilizing five datasets with
different levels of annotations and patient distributions is shown
in Fig. 3.

For the multi-phase CT imaging registration as preprocessing,
we use DEEDS (Heinrich et al., 2013), which performs the best in a
recent evaluation of abdominal CT imaging registration algorithms
(Xu et al., 2016). For the training of our segmentation models men-
tioned above, we use the nnUNet backbone (Isensee et al., 2021)
due to its high accuracy on several medical image segmentation
tasks, such as abdominal organs, vessels, and tumors (Isensee et al.,
2021). 3D UNet working with full image resolution is used as the
network architecture. A combination of Dice and cross-entropy loss
is utilized. We train the models to optimize the loss of all given
classes. The model that produces the best Dice score on the vali-
dation set is selected as the best segmentation model.

3.2. Deep multi-task model with CE-ConvLSTM

We use multiple time points of 1, 2, 3 to represent non-
contrast, pancreatic, and venous phases, respectively. The dataset
is prepared for every tumor volume from each phase scan, to build
the 4D CE-CT data format for anatomy structure (AS) and enhance-
ment pattern (EP) branch (as X2,t € {1,2,3}, b e {AS, EP}). After
self-learn segmentation, we now have pancreas anatomy segmen-
tation models and results. A multi-phase sequence of image sub-
volumes of 64 x 64 x 64 pixels® centered at the tumor 3D centroid
is cropped to cover the entire tumor and its surrounding vessels
and pancreas. Our joint learning network architecture is shown in
Fig. 4. This network is designed for predicting both the resection
margins and survival outcomes.

The branch of Anatomy Structure (AS) uses one 3D-CNN model
with six convolutional layers equipped with Batch Normalization
and ReLu. Similar 3D architecture has shown good prediction per-
formance for lung cancer (Lou et al., 2019). To consider the tumor-
vascular involvement, we include segmentation results of four ves-
sels (i.e., PVSV, SMV, SMA, and TC), pancreas, and PDAC. The input
of this branch is the concatenation of CT volumes at different time
points and the corresponding tumor, pancreas, and vessels masks:
X4 e R4¥64°_This branch will attempt to learn the CT intensity at-
tenuation variations and the relationships between tumor and sur-
rounding pancreas regions and vessels, which help classify the tu-
mor into different resection status. Note that RO/R1 can only be

obtained after the surgery and pathology. Our model can be ap-
plied preoperatively in real scenarios to offer patients with PDAC
the appropriate advice regarding surgical decisions.

To consider tumor attenuation, the branch of Enhancement Pat-
tern (EP) uses CT volume at each phase (each phase is CT-M two-
channel input, XFP € R2%64) We crop 3D Volume of Interest (VOI)
using PDAC, pancreas, and pancreatic duct mask. Then PDAC mask
is used as the one addition channel of inputs in this branch (PDAC
mask shown on original CT images X in Fig. 4). Tumor attenua-
tion usually means the contrast differences between the tumor and
its surrounding pancreas tissues so that this branch can help cap-
ture the tumor attenuation patterns across phases. The core part of
this branch is a recurrence module that allows the network to re-
tain what it has seen and to update the memory when it observes
a new phase image. A naive approach is to use a vanilla LSTM or
ConvLSTM network. Conventional ConvLSTM is capable of model-
ing 2D spatio-temporal image sequences by explicitly encoding the
2D spatial structures into the temporal domain (Chen et al., 2016).
A more recent ST-ConvLSTM simultaneously learns both the spa-
tial consistency among successive image slices and the temporal
dynamics across different time points for the tumor growth pre-
diction (Zhang et al., 2019). Instead of using adjacent 2D CT slices
and motivated by 3D object reconstruction (Choy et al., 2016), we
propose to use a ResNet3D-based Contrast-Enhanced 3D Convo-
lutional LSTM (CE-ConvLSTM) network to capture the temporally-
enhanced imaging patterns from CE-CT sequences. CE-ConvLSTM
can model 4D spatio-temporal CE-CT sequences by explicitly en-
coding and projecting their 3D spatial structures into the temporal
domain.

The main equations of ConvLSTM are as follows:

_ft:U(W}(*XfP—{—W;{*Ht,]—{—bf) (1)
i = o WX« XEP + WH « He_q + b))

0 =0 (WX« XEP + WH s« H,_y + by)

G = ft oGCG_1+ ir ® tanh(ch *XtEP + W(H *He_1 + bc)

H; = o; © tanh(C;)

where XEP is the CE-CT sequences at time t, x denotes the con-
volution operation, and ® denotes the Hadamard product. All the
gates f,1i, 0, memory cell C, hidden state H are 4D tensors. We use
3 x 3 x 3 convolutional kernels and 128 as the channel dimension
of hidden states for the LSTM unit. We employ 3D-ResNet18 (Hara
et al., 2018; Chen et al, 2019) as the encoder to encode each

three-channel input to the lower-dimensional feature maps for CE-
ConvLSTM.
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After the concatenation of feature maps from both tasks, the
channel number of this common representation is 256. Then two
separate fully-connected networks will use the common represen-
tation for each prediction task. In the training phase, labels of the
resection status y and patient overall survival information (OS time
tos and censoring status &) are known for each input CE-CT se-
quence. Suppose the output from each fully connected network for
resection margin and overall survival prediction task is denoted as
ofM and 0%, respectively. Since most patients have RO resection
margins, and the imbalanced class exists in practices. Therefore,
the weighted binary cross-entropy (BCE) loss is applied to the re-
section margin prediction task,

1 N
Lew = =55 > woyi - logof™ + w1 (1 ;) - log(1 — of™), (2)
i

The negative log partial likelihood ((Cheng et al,
2021)(Katzman, Shaham, Cloninger, Bates, Jiang, Kluger)) which
allows the usage of information from censored data is employed
as the survival loss to predict the survival outcome 0% of this
patient. This survival loss is summarized as

Los =) 8i(—o +log ) exp(o}*)). (3)

Jitj>=t;

where j is from the set whose survival time is equal or larger than
ti (t; = t;) and § is 1 for death happened while O for censored. The
final training loss is L = Los + ALgy and A is set to 0.5.

3.3. Final PDAC staging

The model is valid to provide continuous risk scores to indicate
patients’ OS and predict their resection margin status. For clini-
cal use and patients risk stratification needed in clinical practice,
we then build a cancer staging system based on risk scores and
predicted resection margin. When applying the trained models on
the testing set, we could get the testing risk score and resection
margin prediction for each patient. Let m!" be the median score
on training patients, we denote risk staging by using the median
training score as the cutoff. For the i-th patient in testing set, its
risk staging is defined as SR =1 if 0¥ > m!" otherwise Sk = 0. As
we know that patients with margin positive (R1) resection usually
are associated with poor clinical outcomes, we can identify and al-
locate the predicted R1 patients into the high-risk group. There-
fore, we then build the final staging by considering both risk stag-
ing and resection margin staging as below

Final __ 0 ifSf=0and SRMZO,
Si _{1, if Sk =1 or A = 1 ()

This staging system can be used to not only assess individual pa-
tient’s risk but also may help guide the treatment decisions for
personalized medicine.

4. Experiments
4.1. Dataset description

Datasets from four hospitals (1,209 patients with pancreatic tu-
mor/cyst) are used in this work. Dataset A, including 296 patients
with pathologically confirmed PDACs (the median tumor size is
2.5 cm), is collected from Shengjing Hospital of China Medical Uni-
versity (SHCMU) with non-contrast, pancreatic (late-arterial), and
venous phases of CT scans. Such a multi-phase CT imaging set-
ting is the standardized protocol for depiction, staging, and re-
sectability evaluations of PDAC, specified in the National Compre-
hensive Cancer Network (NCCN) guidelines (NCCN-PDAC, 2020).
The median imaging spacing is 0.70 x 0.70 x 3mm in [X)Y,Z].

Table 1

Demographic and tumor characteristics in Data A. Median [interquartile range,
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25th-75th percentile] values are reported for continuous variables.

Characteristics

Dataset A for prognosis (n=296)

Sex, n (%)
Female/Male

Age at diagnosis, yrs
pT Stage, n (%)
pT1/pT2

pT3/pT4

pN Stage, n (%)
pNO/pN1/pN2

pTNM Stage, n (%)
1/11/11

Tumor Size, cm
Tumor location, n (%)

131(44%)/165(56%)
60(53-66)

62(21%)/199(67%)
18(6%)/17(6%)

199(67%)/78(26%)/19(7%)

179(61%)/84(28%)/33(11%)
2.5 (2.1-3.0)

head 134(45%)
uncinate 141(48%)

body or tail 21(7%)

Resection Margin, n (%)

RO/R1 258(87%)/38(13%)

CA 19-9 (U/mL)
< 210/> 210/Missing
Adjuvant therapy, n (%)

155(52%)/136(46%)/5(2%)

No adjuvant 22(7%)
Chemotherapy 117(40%)
Chemoradiotherapy 157(53%)

PDAC tumors are manually traced and annotated on the pancreatic
phase slice by slice by a radiologist (YS) with 16 years of expe-
rience in pancreatic imaging. Dataset B1 and Dataset B2, includ-
ing 571 patients with pathologically confirmed PDACs (no manual
annotations) and 61 patients with pathologically confirmed IPMNs
(manual annotations are performed by a board-certified radiologist
(KC) with 14 years of specialized experience in pancreatic imag-
ing), respectively, are collected from Changhai Hospital with non-
contrast, early-arterial/pancreatic, and venous phase CTs used in
this work. The median imaging spacing is 0.68 x 0.68 x 3mm.
Dataset C, including 281 patients with pancreatic tumor annota-
tions, is a public dataset provided by Memorial Sloan Kettering
Cancer Center (Simpson et al., 2019). The median imaging spacing
is 0.80 x 0.80 x 2.5mm. Dataset D is a combination of two public
datasets (described in (Gibson et al., 2018)), including abdominal
CT scans of 90 patients with 17 classes of pixel-level organ and
vessel annotations. More details about the annotation process are
described in our previous work (Zhang et al., 2020).

Among these datasets, only Dataset A (n=296) has complete
data to perform OS prediction, including PDAC baseline CT imag-
ing, OS time and status, preoperative clinical as well as post-
operative pathology (e.g., resection margin status) information.
Surgical procedures were performed by experienced surgeons at
SHCMU - a high-volume pancreatic cancer institution where ex-
tended amounts of pancreatic resections are commonly performed.
Dataset A has been conducted the quality control to exclude pa-
tients with stents which could cause imaging artifacts to influence
annotations. Therefore, Dataset A is used in the prediction and
prognosis experiments. All information including adjuvant therapy
of Data A can be seen below in Table 1. All five datasets are used
to train the pancreas and peripancreatic anatomy segmentation
model.

4.2. Evaluating of segmentation performance

4.2.1. Implementation details

For the nnUNet training (Isensee et al., 2021), most parame-
ters are set by default. The original 3D scans are resampled to
the median spacing of the training data. The network inputs are
3D subvolumes. Multi-phase registered CT images are directly con-
catenated as input channels to feed the network. The input-level
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Table 2

Performance comparison of teacher and student models for vessel segmentation.
Bold indicates better results. TC: truncus coeliacus; SMA: superior mesenteric
artery; SMV: superior mesenteric vein; PVSV: portal vein and splenic vein. O&V:
organs and vessels.

Vessels Metrics Teacher O&V Student

TC Dice 0.77+£0.13 0.81+0.12
ASD 0.70+0.85 0.66+1.16
HD 9.38+8.88 9.21+7.28

SMA Dice 0.71+£0.19 0.74+0.17
ASD 2.16+4.62 1.72+3.04
HD 11.74+13.23 11.66+:12.09

SMV Dice 0.814+0.09 0.84-:0.05
ASD 0.85+0.51 0.60+0.30
HD 7.83+£3.34 6.62+2.93

PVSV Dice 0.77+0.08 0.81+0.06
ASD 1.56+1.28 1.10+1.01
HD 20.744+17.29 15.83+15.32

fusion is widely adopted in the multi-modality tumor segmenta-
tion tasks (Zhou et al, 2019). The Teacher models O&V and P&T
and Student model are trained with 200 epochs (250 batches per
epoch). Teacher D is trained with 1000 epochs. The training pro-
cess is taken on a NVIDIA Titan RTX-6000 GPU. For training these
models, a random training-validation (80%-20%) splitting is used.

4.2.2. Evaluation methods and results

The pancreas segmentation in CT images is a relatively well-
studied problem. nnUNet produces leading performance on this
task (Simpson et al., 2019). Therefore, we report the segmentation
performance of IPMN/duct and four peripancreatic vessels (i.e., TC,
SMA, SMV, and PVSV). On the validation set in Dataset B2 with
manual annotations as ground truth, the Dice score of IPMN/duct
segmentation is 0.73. As references, the Dice scores of pancreatic
duct segmentation are 0.62-0.64 in recent studies (Wang et al.,
2020; Xia et al., 2020). However, we acknowledge that these num-
bers are not directly comparable since different datasets are used
- IPMN cases in ours and PDAC cases in the reference work.

To assess the vessel segmentation performance, we invite a
medical student (QS) in pancreatic imaging to perform manual
segmentation under the supervision of a radiologist (YS). Nine-
teen cases with 9 RO and 10 R1 (four pT1, eight pT2, three pT3,
and four pT4) are randomly selected for the assessment. The man-
ual segmentation of TC and SMA is performed on the pancreatic
phase, while SMV and PVSV on the venous phase. Dice score (rang-
ing between 0 and 1), average surface distance (ASD, mm), and
Hausdorff distance (HD, mm) are used as metrics. The Teacher
O&V (Zhang et al., 2020) which is trained on the public dataset
(Gibson et al., 2018) is used for comparison. Note that the evalua-
tion only considers the vessels near the pancreas region (defined
as 5 mm larger than the pancreas bounding-box in each direc-
tion in this work), as they are meaningful and clinically relevant to
PDAC prognosis. Results are shown in Table 2. The student model
outperforms its teacher for all four vessel classes. An illustrative
vessel segmentation example is shown in Fig. 5.

4.3. Evaluation of prognosis performance

4.3.1. Implementation details and metrics

We adopt the nested 4-fold cross-validation (with training, val-
idation, and testing sets in each fold) to evaluate our prognosis
model and other competing methods. All CT images were resam-
pled to an isotropic 1 mm? resolution. During training, we did the
following data augmentations, (1) rotating the volumetric tumors
in the axial direction around the tumor center with the step size
of 90° to get the corresponding 3D CT image patches and their mir-
rored patches, (2) selecting the cropped regions with random shifts
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for each iteration during the training process, 3) applying random
Gaussian noise on 3D CT image patches. The data augmentation
can improve the network’s ability to locate the desired transla-
tional invariants. The batch sizes of our method and other models
are set the same, which are 8. For training, we use Adam optimiza-
tion with a weight decay 5 x 104, The learning rate is set to 10~4.
The training process monitors the loss on the validation set, and
it will early stop if the loss goes increased noticeably. The max-
imum iteration is set to be 500 epochs, and the model with the
best performance on the validation set during training is selected
for testing.

For the prognosis evaluation, we choose the Harrell’s concor-
dance index (C-index) (Harrell et al., 1982). The C-index quanti-
fies the ranking quality of rankings whether the predicted survival
times are ranked in the same order as their true survival time. It
is calculated as follows

1
c=— > D Ifi>fjl (5)

ie{1..N|§i=1} t;>t;

where n is the number of comparable pairs and I[.] is the indica-
tor function. t. is the actual time observation. f. denotes the corre-
sponding risk. The value of C-index ranges from O to 1 where the
larger the value is, the better the model predicts.

In the ablation study, we first validate deep survival predic-
tion performance under different imaging modality protocols, in-
cluding the pancreatic phase only, venous phase only, and all
three phases together with early fusion. ResNet3D-18 with the pre-
trained weights (Chen et al., 2019) is used as an advanced model
compared to the conventional 3D ConvNets. Radiomics signature
from single-phase and radiomic nomogram for multi-phase CT im-
ages are also evaluated for ease of comparison.

4.3.2. Other competing methods

Multi-task models. To evaluate the effectiveness of the multi-
task model, we compare the proposed model with other deep
multi-task models. The first one is our preliminary work (Yao et al.,
2020a) that does not have the pancreas anatomy segmenta-
tion, and neither considers the tumor-vascular involvement. Tang
et al. propose using separate branches of 3D CNNs to predict
both OS time and tumor genotype for glioblastoma (GBM) pa-
tients (Tang et al, 2020). Lou et al. present a multi-task train-
ing model on the shared hidden representations from a single
model (Lou et al, 2019). We replace the RMSE loss from the
original implementation of Tang et al. (2020) with the nega-
tive log partial likelihood loss because it can handle alive pa-
tients (whereas authors discarded some patients who are still alive
in Tang et al. (2020)). For other baselines (Tang et al., 2020; Lou
et al,, 2019), inputs include not only PDAC but also surrounding
vessels and pancreas tissues to let the model have tumor-vascular
information.

Radiomics signature and nomogram. To compare with traditional
radiomics methods, we built radiomics signature of each CT phase
and then created radiomic nomogram from a multiphase signature.
For each phase (non-contrast, pancreatic, and venous), we con-
structed the signature in the following. First, we extracted features
using an open-source Python package, Pyradiomics (Van Griethuy-
sen et al., 2017)?, from 3D tumor regions. There are 482 radiomics
features in total, which can be divided into four groups: 1) inten-
sity, 2) geometry, 3) texture, and 4) wavelet features.

o The intensity features quantified the first-order statistical dis-
tribution of the voxel intensities within the volumes of interest
(tumor or lymph nodes). The statistical measurements include

2 https://pyradiomics.readthedocs.io/
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Teacher O&V Student, Ours

Fig. 5. A qualitative examples of vessel segmentation by the teacher and student models. Upper panel: The student model further improves the teacher’s accuracy by
identifying/delineating more accurate PVSV and SMA boundaries (white arrowheads). Middle panel: an inaccurate PVSV narrowing (black arrowhead) identified by the
teacher model can be correct by the student model. Lower panel: an incorrect tumor-SMA separate (black arrowheads) identified by the teacher model can be correct by the
student model. The histological examination confirmed the diagnosis of stage T4 PDAC, i.e., tumor involving the SMA. Note that the same manual PDAC mask is used in this

example.

Energy, Entropy, etc. This group has 18 features in total (1st-
18th).

o The texture features measured the spatial distribution of the
voxel intensities, thereby quantifying the intra-tumoral hetero-
geneity. There are 34 texture features in total (19th-52nd).

o The geometry feature group contains features that quantified

3D shape characteristics of the tumor or lymph nodes. It is

composed of 14 features in total (53rd-66th).

Wavelet features were calculated by applying wavelet transfor-

mations to the original input images. There are 416 features in

total (67th-482nd).

Subsequently, a coarse-to-fine feature selection strategy was
used to select the most important imaging features and reduce
the risk of bias and potential over-fitting. Univariable analysis was
completed for each feature in the training set. Features with p-
value < 0.1 were considered to be potentially associated with OS
and were selected into the next process. The least absolute shrink-
age and selection operator (LASSO) Cox regression (Tibshirani et al.,
1997) method was then used to obtain the most statistically infor-
mative prognostic features from candidate features and construct
the radiomic signature. The number of final selected features for
each phase is different across folds, ranging from 6 to 20. To con-
sider the power of multiphase CT imaging, we built a radiomic
nomogram (Huang et al., 2016) that combines the radiomic signa-
tures from 3 phases.

4.3.3. Results: effects of using single phase and multi-phase imaging
protocols

In this section, we investigate the prognosis performances us-
ing single pancreatic and venous phase as well as all three phases
from the DCE-CT imaging protocol (Dataset A). We build deep sur-
vival learning baseline models using ResNet3D as the backbone
and then test them on a single contrast-enhanced phase (pancre-
atic or venous) and all three phases as inputs. Radiomics signa-
ture on single-phase and radiomics nomogram on all phases are
reported accordingly. Table 3 presents the performances of dif-
ferent predicted models. The pancreatic phase CT is one specific
imaging phase for pancreatic cancer staging and prognosis in the
clinical environment, which provides the best contrast for observ-
ing the pancreas and tumor (NCCN-PDAC, 2020). From Table 3, we

can first observe that deep survival models achieve better predic-
tions than radiomics model using the same CT phases. Then, we
can find the best performances of single-phase are from models
using the pancreatic phase (0.623 vs 0.595 using CE-ResNet3D;
0.601 vs 0.575 using Radiomic signature). Better results can be ob-
served when fusing all three phases together in both deep learn-
ing and radiomics models. ResNet3D with CE-ConvLSTM has fur-
ther improved performance versus CE-ResNet3D with early fusion
(0.645 vs 0.635). Similar trends could also be found when evalu-
ating using survival AUC values at 1-year and 2-year clinical inter-
ested time-points.

To achieve statistical analysis, we follow one recent
study (Lou et al., 2019) and apply a bootstrap method. For
each fold, the test set is randomly resampled for calculating the
C-index. This is repeated 100 times for each fold. The Wilcoxon
signed rank test is then used to compare the C-index distributions.
Results are presented in Table 4 and the bootstrapped C-index
of Res-CE-ConvLSTM is 0.645 (95% CI 0.552-0.723) and for CE-
ResNet3D with all three phases is 0.638 (95%Cl 0.538-0.744).
Two-sided p values after Bonferroni correction are reported. Re-
sults in this table illustrate that the dynamic enhancement CT
imaging patterns learned and captured by CE-ConvLSTM can help
achieve significant prediction improvements compared against
early fusion CNNs.

4.3.4. Results: comparisons of multi-task deep learning models

We first investigate correlations between patients with "ves-
sel contact” and RO/R1 resection margin status. We could study
such correlations using automatically self-learned segmentation.
We consider PDAC contact information with the surrounding four
important vessels, which are consistent with our Section 4.2, in-
cluding PVSV, SMV, SMA, and TC. We calculate the 3D Euclidean
distance from each voxel of PDAC to the nearest voxels of those
target vessels. If the distance of one PDAC voxel to the nearest
voxel of one target < Tmm, we consider such a voxel has contacted
with the target vessel (considering the auto-segmentation error).
Then we could calculate Spearman’s correlation between contact
areas (the number of contacted voxels) and resection margin sta-
tus (RO/R1). Table 5 shows correlations of such correlations. We



J. Yao, Y. Shi, K. Cao et al.

Table 3
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C-index, 1-year, and 2-year overall survival AUC values of different models across 4 folds. The average and standard devia-
tion values are reported. N: non-contrast, P: pancreatic, V: venous phase.

Method CT phases C-index 1-yr AUC 2-yr AUC
Res-CE-ConvLSTM N+P+V 0.645+0.013 0.684+0.057 0.689+0.032
CE- N+P+V 0.635+0.030 0.616+0.117 0.682+0.040
ResNet3D P 0.623+0.023 0.664+0.041 0.673+0.058
\Y 0.595+0.030 0.605+0.032 0.619+0.027
Radiomics N+P+V 0.608+0.050 0.600-+0.046 0.662-+0.090
Signature P 0.601+0.059 0.585+0.066 0.637+0.096
\Y 0.575+0.069 0.540+0.095 0.608+0.112

Table 4
Prediction performance of different deep learning models of outcome prediction us-
ing bootstrapped samples.

Methods CT phases  C-index  95% CI Adjusted p-value
Res-CE-ConvLSTM  N+P+V 0.645 0.552-0.723  ref
CE- N+P+V 0.638 0.538-0.744 0.036
ResNet3D P 0.625 0.525-0.718 <0.0001

\'% 0.598 0.488-0.694 <0.0001
Radiomics N+P+V 0.610 0.486-0.716 <0.0001
Signature P 0.603 0.470-0.722 <0.0001

\'% 0.571 0.396-0.700 <0.0001

Table 5

Spearman’s correlations between tumor-vessel contacted area and resection margin
status (RO/R1).

Spearman’s correlation

Target vessel P p value
PVSV 0.11 0.056
SMV 0.29 <0.0001
SMA -0.06 (0.67-1.27) 0.296
TC -0.03 (0.97-1.96) 0.575

can see that the PVSV- and SMV-tumor contacts are significantly
correlated with RO/R1 while SMA- and TC- contacts are not.

Our previous model (Yao et al., 2020a) did not include the pan-
creas anatomy segmentation. We then investigate if simply adding
“contact with anatomy” could bring benefits. We encode 4-element
by considering the PDAC contact areas with PVSV, SMV, SMA and
TC, as these four vessels are believed to be more relevant to the
resection margin and even OS. Then we concatenate these vari-
ables in the concat layer of our previous model (Yao et al., 2020a).
Table 6 shows performances of each deep learning model. It could
be seen that for RO/R1 prediction, the modified MICCAI 2020
model (Yao et al., 2020a) with contact feature could have improved
sensitivity but decreased specificity than the original model. Sim-
ilarly, for survival prediction, the modified model has a slightly
lower c-index. The result could illustrate that simply adding con-
founding variables into the model might not provide significant
performance gain.

To further evaluate the performance of multi-task baseline
models, we report the results in comparison to recent multi-task
deep prediction methods (Yao et al., 2020a; Tang et al., 2020; Lou
et al., 2019), as shown in Table 7. Our previous model (Yao et al.,
2020a) did not include the pancreas anatomy segmentation while
other two models (Tang et al., 2020; Lou et al., 2019) cannot
capture the tumor temporal enhancement changes because they
only adopt 3D CNN networks on early-fused CT images. Classi-
fication performances are evaluated by the metrics of Balanced-
Accuracy, Sensitivity, and Specificity while survival predictions are
compared using c-index. In Table 7, single classification task uses
CE-ResNet3D and CE-3DCNN can be found in the last two rows. It
is shown that RM predictions from multi-task model achieve better
balanced-ACC results, which demonstrates that the joint learning

10

by adding survival branch can benefit classification task. We can
see the proposed framework and our preliminary work (Yao et al.,
2020a) achieve better results than the baseline deep multi-task
models with early fusion (Tang et al., 2020; Lou et al., 2019). This
shows the effectiveness of capturing tumor dynamic changes across
phases using CE-ConvLSTM. By incorporating both the tumor atten-
uation and tumor-vascular involvement from pancreas and peri-
pancreatic anatomy, the proposed model further improves perfor-
mances in both survival and resection margin task over the previ-
ous model without using it (Yao et al., 2020a).

We assess the prognostic relevance of final staging systems
from different multi-task models for predicting overall survival. Be-
cause staging in one fold is actually independent to the results
in other folds, we can conduct analysis on the entire Dataset A
by combining all four testing folds together. Univariate Cox anal-
ysis is first performed in this study and the importance of indi-
vidual covariates is assessed by computing the Wald x? statistic,
as shown in Table 8. We can see that the proposed final staging
as a time-dependent covariate yields an HR of 2.39 (95%CI 1.77-
3.22) with a x2 value of 34.81 which provides improvements from
single “risk staging” and “RM prediction”. It can also be observed
that the different final staging models achieve higher x2 and HR
values than corresponding single staging systems, except for one
model (Tang et al., 2020). Incorporating the prediction of RO/R1
with OS prediction in the multi-task model could bring perfor-
mance gain from the model with only OS prediction. The jointly
learning of cancer risk and resectability in a multi-task setting can
derive more effective and comprehensive prognosis related deep
image features and subsequently improve the prediction accuracies
for both tasks.

Table 9 presents how different final staging results perform
in the multivariable Cox model. Further multivariable analysis
demonstrates the greatest contribution from the proposed model
to the OS among all multi-task methods. Specifically, the highest
x2 value of the proposed model indicatse its more than 50% con-
tribution to the overall model x 2. Results suggest that staging from
the proposed model could be a (statistically) very strong prognos-
tic marker compared with other staging markers.

4.4. Added clinical values

To validate the potential clinical values of our new imaging
marker and staging system from the proposed model, we conduct
extensive quantitative experiments and analysis to compare with
both preoperative and postoperative important prognostic factors
for pancreatic cancer. Preoperative factors are variables that cap-
ture before surgery, including imaging markers from baseline CT
images, markers from the blood test (e.g., CA19-9), and Demo-
graphics (e.g., age, sex). Post-operative factors for PDAC are from
evaluations according to NCCN/AJCC guidelines after surgery, which
usually include standard TNM staging, tumor size, and resection
margin measurement.

We first plot ROC curves of OS prediction in Fig. 6 of the pro-
posed imaging marker with other factors including pTNM and tu-
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Ablation study of adding "contact with anatomy”. Averaged results over four folds are reported.

Survival Resection Margin: RO/R1
Task - . —
C-index B-ACC Sensitivity Specificity
Yao et al., 2020a+contact feat Mul 0.640 0.639 0.563 0.715
Yao et al., 2020a Mul 0.651 0.640 0.489 0.791

o o
- 1-yr Survival ROC - 2-yr Survival ROC
@ «©
o o
w0 o
> o > o
S 2
i s p
[ [ Vd
n o< | N o< | ’
o o
Proposed.: 0.718 e Proposed.: 0.707
== Yaoetal 2020.: 0.664 == Yao etal. 2020.: 0.668
Radiomics nomogram: 0.603 Radiomics nomogram: 0.646
P === pT:0.665 & s pT:0.622
S = DN: 0.591 S o= pN: 0.574
=== pTNM: 0.636 == pTNM: 0.607
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Fig. 6. 1-year and 2-year OS ROC curves of different markers.

Table 7
Average results of different methods over four folds. Mul: multi-task; cls: single
classification.

Table 9
Multivariable Cox proportional hazards regression model for overall survival in the
dataset by combing testing folds.

Survival Resection Margin: RO/R1 Final Staging
Task

C-index B-ACC Sensitivity Specificity HR (95%CI) x? p value
Proposed Mul 0.667 0.671 0.598 0.743 Proposed 1.80 (1.27-2.55) 11.17 0.00083
Yao et al., 2020a Mul 0.651 0.640 0.489 0.791 Yao et al., 2020a 1.51 (1.07-2.12) 5.74 0.017
Tang et al., 2020 Mul 0.610 0.638 0.522 0.755 Tang et al., 2020 0.92 (0.67-1.27) 0.26 0.61
Lou et al., 2019 Mul 0.622 0.628 0.492 0.764 Lou et al., 2019 1.38 (0.97-1.96) 3.23 0.07
CE-ResNet3D cls - 0.609 0.473 0.745
CE-3DCNN cls - 0.611 0.508 0.714

mor size. The ROC curves of 1-year and 2-year OS are presented,
respectively. It is interesting to see that the preoperative imaging
marker from the proposed model can obtain statistically better re-
sults than pT stage, pN stage, and tumor size on pathological ex-
aminations to identify if PDAC patients could survive more than
1 year or 2 years. Our signature also performs better than other
deep imaging signature (Yao et al., 2020a) and radiomics nomo-
gram (Huang et al., 2016).

Table 8

In Table 10, univariate and multivariate cox proportional-
hazards models are used to evaluate the Hazard Ratio (HR) and
log-rank test p-value for each factor, including final staging from
different models, radiomics nomogram staging, and other clini-
copathologic factors (preoperative CA19-9 and post-operative tu-
mor size measurement). From the statistic analysis (in Table 10),
the proposed signature is a strong prognostic factor in the uni-
variate analysis just behind the post-operative resection margin in
terms of HR values. The proposed signature remains representa-
tively powerful in multivariable analysis (HR=1.809, p=0.0019) ad-

Evaluation of different staging strategies by univariable analysis. *** indicates p < .0001, ** is p <.001, * is p <.01. NS is no

significance. RM short for Resection Margin.

Method Risk Staging RM Prediction Final Staging
HR (95%CI) x? HR (95%CI) X2 HR(95% CI) X2

Proposed 2.32 33.90% 1.53 7.27¢ 2.39 34.81%
(1.74-3.10) (1.13-2.07) (1.77-3.22)

Yao et al., 2020a 2.09 26.18*** 1.79 12.39* 213 26.91"*
(1.57-2.78) (1.31-2.43) (1.59-2.85)

Tang et al., 2020 1.84 17.59* 1.25 1.97Ns 1.50 7.99*
(1.38-2.45) (0.92-1.71) (1.13-1.99)

Lou et al, 2019 2.07 25.28%* 1.55 7.59¢ 2.10 25.71%*
(1.55-2.77) (1.15-2.10) (1.57-2.81)

1
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Fig. 7. Kaplan-Meier analyses of overall survival according to the proposed staging (1st row), our previous staging (2nd row) and radiomics nomogram (3rd row) in patients
within two different subgroups (TNM I vs. II-1Il stage). The proposed staging significantly stratifies all subgroups.

justing for established clinicopathologic prognostic markers, for ex-
ample, stromal fractions (HR=0.164, p=0.0013), resection margins
(HR=4.323, p < .0001). Contributions of each factor could be found
in Table 11 and our model provides the strongest factor among
all preoperative factors. The proposed marker is also stronger than
any other CT-derived imaging signature using radiomics nomo-
gram (Huang et al., 2016) or our preliminary model (Yao et al.,
2020a).

To demonstrate the added clinical value of our proposed
marker, we plot Kaplan-Meier survival curves in Figs. 7 and 8 for
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patients with further stratification after grouping by TNM and tu-
mor size, respectively, which are two well-established stratification
criteria for making treatment decisions or recommendations. The
log rank test is conducted to test the difference of two curves. P-
values < 0.05 are considered as statistically significant. TNM stage
and pathological tumor size are two clinically-established predic-
tors. We study the added values of our proposed marker to sub-
groups of patients stratified by: (1) TNM staging I vs. II-1II, (2) tu-
mor size < 3.0cm vs. > 3.0 cm; where 3.0 cm is the clinically
meaningful tumor size cutoff that has been used in recent clini-
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Overall survival (%)

Fig. 8. Kaplan-Meier analyses of overall survival according to the proposed staging (1st row), our previous staging (2nd row) and radiomics nomogram (3rd row) in patients
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within two different subgroups (tumor size < 3.0 cm vs. > 3.0 cm). The proposed signature significantly stratifies all subgroups.

Table 10

Univariate and Multivariate Cox regression analysis. HR: hazard ratio; CI: confidence interval.

Univariate Analysis

Multivariate Cox

Factors

Stromal Fraction
Tumor size

Resection margin

pT stage

PN stage

CA19-9

Radiomics nomogram
Yao et al., 2020a
Proposed

HR (95% CI)

0.131(0.047-0.367)
1.531(1.324-1.771)
3.804(2.573-5.624)
1.911(1.569-2.328)
1.545(1.226-1.947)
1.001(1.000-1.001)
1.610(1.215-2.133)
2.126(1.587-2.849)
2.390(1.773-3.223)

p-value HR (95% CI)

< 0.0001 0.164(0.055-0.495)
< 0.0001 0.959(0.667-1.379)
< 0.0001 4.323(2.665-7.014)
< 0.0001 1.533(1.131-2.077)
< 0.0001 1.319(0.970-1.790)
0.48 1.000(0.999-1.001)
< 0.0001 1.495(1.081-2.069)
< 0.0001 1.428(0.979-2.084)
< 0.0001 1.809(1.243-2.633)

p-value
0.0013
0.82

< 0.0001
0.0059
0.078
0.098
0.015
0.064
0.0019
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Table 11

Contribution of each variable to the overall model.
Variable X2 Variable X2
Resection Margin 27.23 pN Stage 5.73
Stromal fractions 10.04 Yao et al., 2020a 3.48
Proposed 9.77 CA19-9 2.63
pT Stage 6.36 Tumor Size 0.05
Radiomics Nomogram 5.80

cal studies (Groot et al., 2019). From Fig. 7, it is shown that the
proposed marker remains the most significant log-rank test out-
come in the majority TNM subgroup - stage I. Radiomics marker
does not reach the statistical significance within the two patient
subgroups. Fig. 8 shows that the proposed staging achieves much
better risk stratification performance (higher HR values) in smaller
tumor size subgroup (< 3.0 cm) than our previous final staging
model (Yao et al.,, 2020a) and performs slighter better in > 3.0 cm
subgroup. After using the current clinicopathologic TNM staging
system or tumor size, our proposed multi-phase CT imaging based
staging can indeed further provide the risk stratification with sig-
nificant evidence. This novel deep learning-based predictive pre-
diction system (as described) may be combined with the estab-
lished clinicopathological criteria to refine the risk stratification
and guide the individualized treatment of patients with PDAC.

In one study (Bilimoria et al., 2007), the authors reported C-
index 0.613 for patients underwent pancreatectomy (the same set-
ting as our study); 0.63 for all patients including both resection
and non-resection. Our method reaches a notably higher c-index of
0.667 vs 0.613 (AJCC 6th edition). Similarly, on our data in Fig. 6,
our marker has higher AUCs of 0.718-0.707 than pT stage of 0.665-
0.622. It’s also worth mentioning that our marker is obtained pre-
operatively while the AJCC staging for patients underwent resec-
tion is post-operative. In other words, our marker can be used to
guide PDAC treatment selection before surgery while likely has a
higher prediction accuracy than the post-operative staging system.
Regarding the reported potentially higher c-index values in some
clinical radiomics papers, we think it may be caused by several
reasons, such as different patient cohorts, different disease (e.g., pT
stage) distributions, smaller data size, and different evaluation de-
sign etc.

5. Discussion and conclusion

Our method could be improved in the following aspects. First, a
quality check of the segmentation by expert radiologist is needed,
especially for the tumor-vessel contact regions. Second, a more so-
phisticated representation of the tumor-vessel relationship can be
designed to better describe the important clinical prior knowledge.
Third, a CT-based lymph node metastasis detection might help
understand the disease more comprehensively. This work mainly
aims to develop a comprehensive deep learning-based imaging
biomarker and investigates its prognostic value when adjusted by
other established clinical and pathological variables. The evaluation
of the added value of this biomarker to clinical variables and stag-
ing system such as CA 19-9 and AJCC is the next step of this de-
velopment study.

In this paper, we propose a new multi-task CNN framework
for cancer survival prediction by simultaneously predicting the tu-
mor resection margins for PDAC patients. The use of CE-ConvLSTM
and self-learning segmentation to consider and encode the dy-
namic tumor attenuation patterns and pancreas anatomies boosts
the whole framework, to significantly outperform the early fusion
deep learning models and conventional radiomics-based survival
models. Our results also validate that final staging from both sur-
vival and resection margin predictions can serve as a strong prog-
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nostic and predictive quantitative biomarker for subgroup patients
after staging by the well-established pathological TNM or tumor
size criteria. This makes our model very promising in future clin-
ical usage to refine the risk stratification and guide the surgery
treatment recommendations of patients with primary resectable
PDAC tumors.
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