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Deep learning has a game-changing potential to improve the state of preventative and precision medicine 

within medical image computing. Here, we will first overview preventative and precision medicine and field 

of deep learning. Afterwards, we will share our perspective on recent research and development activities in 

both areas and point out some existing achievements, positive indications, limitations, and near future oppor-

tunities and impediments. To flesh out our viewpoints, we draw from examples of our most recent work, 

which largely stem from radiologic images, but we encourage readers to consult some other recent reviews 

which include many references that space did not allow us to include. We also assume the reader is broadly 

familiar with machine learning technologies. 

Overview & Status: Preventive medicine in medical imaging refers to early detection of disease findings, 

e.g., lung nodules, colonic polyps, liver/bone lesions, with the goal of timely patient intervention and man-

agement. Traditionally this is done using manual examination from non-invasive imaging modalities, but 

more recently computer-aided solutions are becoming more prominent. Precision medicine, within imaging, 

means computing quantitative and precise imaging biomarkers, e.g., volumetric tumor measurements for 

tracking and beyond, to support clinical decision making and ultimately improve patient outcomes. Current 

radiological practices are still largely qualitative, even for the most advanced medical centers.  

Deep learning, especially deep convolutional neural networks (CNNs), have made significant headway in cat-

egorically improving both preventative and precision medicine. This includes the preventative detection of 

anomalous findings in various imaging modalities, such as histology images or within computed tomography 

(CT) scans. For instance, markedly higher quantitative performance has been achieved for classifying en-

larged lymph nodes and colonic polyps from CT (H. Roth et al., 2016), (H. Shin et al., 2016). For precision 

medicine, progress has been made on accurately segmenting organs (H. Roth et al., 2018), (J. Cai et al., 

2017), (A. Harrison et al., 2017) and anatomical anomalies (J. Cai et al., 2018), which would play a central 

role for any quantitative markers.  

The main reason of these early successes is that effective learning of hand-crafted features for medical image 

analysis problems is notoriously hard whereas CNNs eliminate this need. In light of this, for the first time 

CNNs have made feasible large-scale medical image parsing and tagging (over thousands or tens of thou-

sands of patients and studies) (H. Shin et al., 2016) (X. Wang et al., 2017), (K. Yan et al., 2018). Works using 

CNNs have also built up a massive body of empirical evidence indicating that low-level features can be 

shared and fine-tuned between networks trained on different image modalities or even from networks trained 

on natural image understanding tasks, e.g., from the ImageNet competition. 

Deep learning has also rekindled and intensified industrial interest in medical imaging applications. Cur-

rently, there is a healthy body of startups focusing on medical image analysis and informatics, e.g., Heart-

Flow, Enlitic, Arterys, Viz.ai, Zebra-Me, and Butterfly Network. These efforts complement the research and 

development initiatives from large corporations, such as Siemens, IBM, Tencent, and Google Brain/Deep-

Mind. Industrial investment and engagement covers various topics in both preventive and precision medicine. 

Though many technological, business and clinical challenges lay ahead, scalable and effective deep learning 
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principles will continue propelling high-performance, deployable medical imaging and clinical informatics 

applications for years to come.  

Future Directions in Deep Preventive Imaging Medicine: Early developments in computer-aided detection 

(CADe), in the pre-deep learning era, mainly concentrated on detecting breast lesions/masses from mammog-

raphy scans and detecting colonic polyps, lung nodules, vascular lesions and pulmonary embolisms from CT 

or CT angiography images. Commercial clinical software products from several vendors were developed and 

deployed into practices, but the “expected” broad success and uptake did not happen. CADe products typi-

cally operate in a second reader mode (the de facto protocol approved by FDA), which means a radiologist 

first finishes an independent image reading without CADe and then examines the CADe generated findings 

to make his or her final decision. This pipeline is designed to increase detection sensitivity, with the aid of 

CADe software, but at the cost of additional physician workload. A common drawback is that the above ap-

plications are not too difficult for experienced radiologists, and the extra workload is not always compensated 

by the moderate to minimal increases in sensitivity, if any. 

New pain points: In order for preventive CADe systems and applications really to take off, new and true clin-

ical pain points, that are not possible to fully address yet, need to be tackled and solved. These should lie be-

yond the traditional second reader protocol or an extra layer of safety. Instead, they should more actively aim 

to improve patient care capabilities. We provide a non-exhaustive list of a few promising examples below. 

1) First reader triage software to (potentially) significantly increase the chances of detecting, and therefore

quickly treating, patients suffering from a large vessel occlusion (LVO) from a stroke has recently been 

cleared by the FDA (work from Viz.ai). The current manual LVO stroke workflow results in low rates and 

long delays of treatment, which can be alleviated by this computer-aided triage and notification software that 

also saves stroke specialists’ time. Another similar work is atherosclerotic vascular calcification detection and 

segmentation using low-dose full body CT scans, which is a very time-consuming task and easy to miss for 

human readers. Long-standing drawbacks of manual exams and the high performance of deep learning alter-

natives meant that these tasks were amenable to a CADe approach. Additional opportunities for first reader 

software need to be identified and seized to further expand the impact of CADe solutions.  

2) Chest X-rays are the most common medical imaging exams and a very accessible modality for screening

both healthy (annual health exams) and unhealthy populations, e.g., those found community clinics and hos-

pitals, respectively. A game changing application would be a reliable and economical automated chest x-ray 

screening and referral tool deployed across massive populations, especially those that are geographically dis-

tant from major hospitals. Four technical challenges, not necessarily specific to chest x-rays, stand in the way 

of such a vision: a) chest x-rays are associated with higher degrees of diagnosis uncertainty, whether ana-

lyzed by radiologists or computerized systems, than other modalities, e.g., lung nodule detection using chest 

CT; b) an extremely low false positive rate is required for generic preventive screening since a large majority 

of a population will be healthy; c) modeling and incorporating disease ontology is critical for reasoning and 

regularizing the raw outcomes from image classifiers to produce sensible diagnoses; d) human interpretable 

and verifiable results are required to produce a clinically complete CADe system. Work is ongoing to over-

come these challenges, but recent developments, e.g., weakly supervised visual grounding of disease loca-

tions (X. Wang et al., 2017), bring the field closer to this vision.  

3) Full body preventive organ anomaly and cancer screening is the holy grail for general and asymptomatic

population screening. Most likely, the ideal setup would also incorporate cheaper and less intrusive non-im-

aging technologies, such as the “CancerSeek” blood test (J. Cohen et al., 2018), to screen all patients under-

going annual health exams. Next, a high-performance, high-accuracy automated medical imaging organ and 

pathology segmentation tool could be used to localize and verify the initial finding indications. Last, a clini-

cal decision fusion module, combining all non-imaging and imaging test results, could report and refer the 

identified “high risk” patients, versus the vast majority of average-risk individuals, to specialists. Although 

recent work on detecting and segmenting especially difficult organs and anomalies have made good progress 

(H. Roth et al., 2018) (J. Cai et al., 2017), for general population preventive screening, extremely generaliza-

ble deep learning methods, possibly trained on massive datasets, require further investigation.   

Future Directions in Deep Precision Imaging Medicine: Compared to preventative medical imaging, pre-

cision imaging has not been as well studied. Historically, quantitative imaging has faced roadblocks due to 

insufficiencies of prevailing machine learning technologies and a lack of buy-in from clinical partners in run-

ning the clinical trials and/or opening up the data archives needed to discover, characterize, and validate 
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quantitative biomarkers. However, with the increasing capabilities of deep learning and prominent policy-

level pushes for precision medicine, we see tremendous opportunity.  

New pain points: Efforts should focus on computing precision imaging biomarkers at hospital scale, bringing 

forth analyses that physicians desire but are out of reach of human capabilities alone. These should focus on 

markers for prominent morbidities, especially cancer, but they should also provide tools that allow entirely 

new types of retrospective analyses for biomarker discovery. A key capability that requires further develop-

ment is how to train deep learning systems on existing data sources, such as hospital archives, that are very 

large scale, but also messy and unstructured. 

1) A common prerequisite of precision medicine is accurate and robust segmentation of anatomical structures

from medical scans, i.e., classifying every pixel or voxel into a semantic meaning. Due to their superior per-

formance, deep CNN-based segmentation methods (H. Roth et al., 2018) (J. Cai et al., 2017) (A. Harrison et 

al., 2017) are now predominant. The value of using segmentation techniques is that raw image scans can be 

converted into semantic and human interpretable features, such as the volume of the left ventricle or the 

shape statistics of a patient’s pancreas. These organ/anatomy based shape, volume, and appearance statistics 

can be computed from 2D/3D/4D imagery, to assist both personalized diagnosis and treatment and also large 

population profiling. An important challenge is collecting enough data for training and ensuring any segmen-

tation solution is generalizable to patient distributions encountered “in the wild.” 

2) When it comes to cancer, precision tumor growth tracking and prediction are additional key elements.

Deep learning has pushed the capabilities of both forward. For instance, physicians need scalable solutions to 

intelligently match, track, and provide evidence-based similarity measurements to measure tumor growth 

rates from multiple time point studies of a patient. Due to the difficulty in obtaining training data, recent 

works train deep learning models on messy and large-scale clinical databases (K. Yan et al., 2018) (J. Cai et 

al., 2018). An example is illustrated in Fig. 1. Continuing to leverage these large-scale data sources will be 

key in further improving tracking capabilities. A related initiative is using deep learning techniques to ob-

serve subtle and precise longitudinal imaging changes in order to predict tumor growth rates and patterns (L. 

Zhang et al., 2018). A visual example of tumor growth prediction modeling and comparison is shown in Fig. 

2. Both tasks are tackling critical and clinically useful precision imaging biomarker problems, which cannot

be done by human doctors alone due to the need to ingest “big data” to make accurate measurements and pre-

dictions. 

3) Last but not the least, one of the ultimate goals of precision medicine is performing retrospective analyses

on clinical data to discover new imaging biomarkers that are correlated with morbidity. This can be framed as 

disease/concept discovery and tagging, given hospital-scale, or better yet multi-institutional, data of patient 

images and non-imaging records. This will likely require modeling multi-modal imaging and non-imaging 

patient data on a graph configuration that builds and preserves pairwise (K. Yan et al., 2018) or higher-order 

patient similarities. Such a representation could provide an indexable and holistic patient data view and re-

pository, allowing analyses beyond plain classification. Importantly, given the long-tailed distribution of 

many disease or ailments, such analyses are highly difficult, if not impossible, to perform without powerful 

computerized techniques, such as deep learning, that can effectively leverage data at massive scales.  
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Fig. 1. Visualization of clusters of tumor types automatically discovered from an analysis of a large scale da-

taset of ~34,000 tumors automatically extracted from a hospital archive (K. Yan et al., 2018). Colors indicate 

the manually labeled lesion types, which correspond well with the automatically discovered tumor types. Best 

viewed in color. 

Fig. 2. An example of the tumor growth prediction using a deep learning system (L. Zhang et al., 2018). (a) 

The segmented (ground truth) tumor contours and volumes at different time points. (b) The prediction results 

at the third time point from various automatic systems. Deep learning based tools match well with the ground 

truth. Red and green represent ground truth and predicted boundaries, respectively. 
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In summary, recent deep learning developments have been very impactful for medical imaging problems and 

applications, even can make some important tasks (e.g., first reader triage) from impossible via non-deep 

principles to reach possibly clinical relevance level of performance. It will be a promising but challenging 

path going forward. 
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